Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach

Document Type : Original Article


1 Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye

2 Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye

3 Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Türkiye

4 Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Türkiye

5 Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye


Objective(s): Sodium arsenite (SA) exposure is toxic to the body. Zingerone (ZNG) is a flavonoid with many biological properties found naturally in honey and plants. This study aimed to determine the effects of ZNG on SA-induced rat lung toxicity.
Materials and Methods: Thirty-five male Sprague rats were divided into Control, SA, ZNG, SA+ZNG25, and SA+ZNG50 groups (n=7). SA 10 mg/kg and ZNG were administered at two doses (25 and 50 mg/kg) (orally, 14 days). Analysis of oxidative stress, inflammation damage, apoptosis damage, and autophagic damage markers in lung tissue were determined by biochemical and histological methods. 
Results: The administration of ZNG reduced oxidative stress by increasing SA-induced decreased antioxidant enzyme activities, increasing Nrf-2, HO-1, and NQO1, and decreasing MDA level. ZNG administration reduced inflammation marker levels. Anti-apoptotic Bcl-2 increased and apoptotic Bax and Caspase-3 decreased with ZNG. ZNG promoted the regression of autophagy by reducing Beclin-1, LC3A, and LC3B levels.
Conclusion: Evaluating all data showed that SA caused toxic damage to lung tissue by increasing inflammation, apoptosis, autophagy, and oxidant levels, whereas ZNG had a protective effect by reducing this damage.


Main Subjects

1. Caglayan C, Taslimi P, Türk C, Gulcin İ, Kandemir FM, Demir Y, Beydemir Ş. Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environ Sci Pollut Res Int 2020;27:10607-10616.
2.    Adeyi OE, Babayemi DO, Ajayi BO, Adeyi AO, Ayodeji AH, Oguntayo AO, et al.  Co-administration of sodium selenite and sodium arsenite exacerbates hepatic, renal, pulmonary and splenic inflammation in rats. Sci Afr 2021;11:e00708.
3.    Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M. Protective effect of hesperidin on sodium arsenite-ınduced nephrotoxicity and hepatotoxicity in rats. Biol Trace Elem Res 2019;189:95-108.
4.    Sun M, Tan J, Wang M, Wen W, He Y. Inorganic arsenic-mediated upregulation of AS3MT promotes proliferation of nonsmall cell lung cancer cells by regulating cell cycle genes. Environ Toxicol 2021;36:204-212. 
5.    Kuzu M, Kandemir FM, Yıldırım S, Çağlayan C, Küçükler S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the anti-oxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut Res Int 2021;28:10818-10831.
6.    Hosseinzadeh A, Houshmand G, Goudarzi M, Sezavar SH, Mehrzadi S, Mansouri E, et al. Ameliorative effect of gallic acid on sodium arsenite-induced spleno-cardio- and hemato-toxicity in rats. Life Sci 2019;217:91-100.
7.    Akanda MR, Tae HJ, Kim IS, Ahn D, Tian W, Islam A, et al. Hepatoprotective role of hydrangea macrophylla against sodium arsenite-ınduced mitochondrial-dependent oxidative stress via the ınhibition of MAPK/Caspase-3 pathways. Int J Mol Sci 2017;18:1-15.
8.    Momeni HR, Eskandari N. Effect of curcumin on kidney histopathological changes, lipid peroxidation and total anti-oxidant capacity of serum in sodium arsenite-treated mice. Exp Toxicol Pathol 2017;69:93-97. 
9.    Wang YC, Chaung RH, Tung LC. Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines. Aquat Toxicol 2004;69:67-79. 
10.    Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Eser G. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. Environ Sci Pollut Res Int 2019;26:22562-22574. 
11.    Gungor H, Ekici M, Onder Karayigit M, Turgut NH, Kara H, Arslanbas E. Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1659-1670. 
12.    Kucukler S, Darendelioğlu E, Caglayan C, Ayna A, Yıldırım S, Kandemir FM. Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci 2020;259:118382. 
13.    Mohammed HM. Zingerone ameliorates non-alcoholic fatty liver disease in rats by activating AMPK. J Food Biochem 2022;46:e14149.
14.    Akaras N, Gur C, Kucukler S, Kandemir FM. Zingerone reduces sodium arsenite-induced nephrotoxicity by regulating oxidative stress, inflammation, apoptosis and histopathological changes. Chem Biol Interact 2023 Apr 1;374:110410. 
15.    Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 1966; 16: 359-364. 
16.    Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126. 
17.    Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497-500.
18.    Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. 1976. Biochem Biophys Res Commun 2012; 425: 503-509. 
19.    Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968; 25: 192-205. 
20.    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.
21.    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001;25:402-408.
22.    Ileriturk M, Kandemir O, Kandemir FM. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environ Toxicol 2022;37:2639-2650.
23.    Al-Brakati AY, Kassab RB, Lokman MS, Elmahallawy EK, Amin HK, Abdel Moneim AE. Role of thymoquinone and ebselen in the prevention of sodium arsenite-induced nephrotoxicity in female rats. Hum Exp Toxicol 2019;38:482-493. 
24.    Souza ACF, Bastos DSS, Couto-Santos F, Guimarães-Ervilha LO, Araújo LS, Souza PHCA, et al. Long-term reproductive effects in male rats prenatally exposed to sodium arsenite. Environ Toxicol 2023 May;38:1162-1173. 
25.    Oyibo A, Gbadegesin MA, Odunola OA. Ethanol extract of Vitellaria paradoxa (Gaertn, F) leaves protects against sodium arsenite - induced toxicity in male Wistar rats. Toxicol Rep 2021;8:774-784. 
26.    Xie X, Sun S, Zhong W, Soromou LW, Zhou X, Wei M, et al. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2014; 19:103-109. 
27.    El-belbasy HI, Hussein MA, Alghitany MEM. Potential effects of cranberry extract against lead acetate-induced hepato-renal toxicity in rats. Adv Anim Vet Sci 2021;9:1669-1683
28.    Aksu EH, Kandemir FM, Özkaraca M, Ömür AD, Küçükler S, Çomaklı S. Rutin ameliorates cisplatin-induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats. Andrologia 2017; 49: e12593.
29.    Çelik H, Kucukler S, Çomaklı S, Özdemir S, Caglayan C, Yardım A, et al. Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology 2020;76:126-137. 
30.    Gur C, Kandemir O, Kandemir FM. Investigation of the effects of hesperidin administration on abamectin-induced testicular toxicity in rats through oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, autophagy, and JAK2/STAT3 pathways. Environ Toxicol 2022;37:401-412. 
31.    Yamanaka K, Hasegawa A, Sawamura R, Okada S. Dimethylated arsenics induce DNA strand breaks in lung via the production of active oxygen in mice. Biochem Biophys Res Commun 1989;165:43-50. 
32.    Mahalanobish S, Saha S, Dutta S, Sil PC. Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis. Food Chem Toxicol 2019;126:41-55. 
33.    Rana MN, Tangpong J, Rahman MA. Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-kB, MAPK pathway. Biochem Biophys Rep 2019;21:100718. 
34.    Ekinci Akdemir FN, Yildirim S, Kandemir FM, Tanyeli A, Küçükler S, Bahaeddin Dortbudak M. Protective effects of gallic acid on doxorubicin-induced cardiotoxicity; an experimantal study. Arch Physiol Biochem 2021;127:258-265. 
35.    Kandemir FM, Caglayan C, Aksu EH, Yildirim S, Kucukler S, Gur C, et al. Protective effect of rutin on mercuric chloride-induced reproductive damage in male rats. Andrologia 2020;52:e13524. 
36.    Ileriturk M, Benzer F, Aksu EH, Yildirim S, Kandemir FM, Dogan T, et al. Chrysin protects against testicular toxicity caused by lead acetate in rats with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. J Food Biochem 2021;45:e13593. 
37.    Kucukler S, Benzer F, Yildirim S, Gur C, Kandemir FM, Bengu AS, et al. Protective effects of chrysin against oxidative stress and ınflammation ınduced by lead acetate in rat kidneys: a biochemical and histopathological approach. Biol Trace Elem Res 2021;199:1501-1514.
38.    Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I. Protective effect of telmisartan treatment against arsenic-induced testicular toxicity in rats. Z Naturforsch C J Biosci 2015;70:175-181.
39.    Caglayan C, Kandemir FM, Yildirim S, Kucukler S, Eser G. Rutin protects mercuric chloride-induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. J Trace Elem Med Biol 2019;54:69-78. 
40.    Yang X, Gao X, Du B, Zhao F, Feng X, Zhang H, et al. Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways. J Ethnopharmacol 2018;225:234-243. 
41.    Abdel-Latif GA, Elwahab AHA, Hasan RA, ElMongy NF, Ramzy MM, Louka ML, et al. A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: Impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Sci Rep 2020;10:13045. 
42.    Caglayan C, Kandemir FM, Darendelioğlu E, Yıldırım S, Kucukler S, Dortbudak MB. Rutin ameliorates mercuric chloride-induced hepatotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. J Trace Elem Med Biol 2019;56:60-68. 
43.    Abdelhamid FM, Mahgoub HA, Ateya AI. Ameliorative effect of curcumin against lead acetate-induced hemato-biochemical alterations, hepatotoxicity, and testicular oxidative damage in rats. Environ Sci Pollut Res Int 2020;27:10950-10965. 
44.    Akcılar R, Akcılar A, Koçak C, Koçak FE, Bayat Z, Şimşek H, et al. Effects of Ukrain on intestinal apoptosis caused by ischemia-reperfusion injury in rats. Int J Clin Exp Med 2015;8:22158-22166. 
45.    Ileriturk M, Kandemir O, Akaras N, Simsek H, Genc A, Kandemir FM. Hesperidin has a protective effect on paclitaxel-induced testicular toxicity through regulating oxidative stress, apoptosis, inflammation and endoplasmic reticulum stress. Reprod Toxicol 2023;118:108369. 
46.    Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2018;106:443-453. 
47.    Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Sodium arsenite-induced DAPK promoter hypermethylation and autophagy via ERK1/2 phosphorylation in human uroepithelial cells. Chem Biol Interact 2009;181:254-262. 
48.    Aksu EH, Kandemir FM, Küçükler S. The effects of hesperidin on colistin-induced reproductive damage, autophagy, and apoptosis by reducing oxidative stress. Andrologia 2021;53:e13900. 
49.    Shahidi M, Moradi A, Dayati P. Zingerone attenuates zearalenone-induced steroidogenesis impairment and apoptosis in TM3 Leydig cell line. Toxicon 2022;211:50-60. 
50.    Xiong L, Huang J, Gao Y, Gao Y, Wu C, He S, et al. Sodium arsenite induces spatial learning and memory impairment associated with oxidative stress and activates the Nrf2/PPARγ pathway against oxidative injury in mice hippocampus. Toxicol Res (Camb) 2021;10:277-283. 
51.    Li GH, Li AL, Chen XM, Zhang LY, Wang T, Wang XN, et al. Naturally-derived diterpenoid sphaeropsidin C as an activator of Nrf2/ARE pathway and its potential capability of relieving intracellular oxidative stress in human lung epithelial cells. Biomed Pharmacother 2020;121:109669. 
52.    Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 2008;74:1564-1575. 
53.    Habtemariam S. The Nrf2/HO-1 axis as targets for flavanones: Neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev 2019; 2019:4724920. 
54.    Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, et al. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. Sci Total Environ 2021;756:143840. 
55.    Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 2013;27:2179-2191. 
56.    Wang T, Sun XY, Li AL, Zhou MX, Han Y, Zhang JZ, et al. Botrysphin D attenuates arsenic-induced oxidative stress in human lung epithelial cells via activating Nrf2/ARE signaling pathways. Biochem Biophys Res Commun 2019;518:526-532. 
57.    Şimşek H, Akaras N, Gür C, Küçükler S, Kandemir FM. Beneficial effects of chrysin on cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene 2023;875:147502.
58.    Kim C, States JC, Ceresa BP. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol In Vitro 2020;67:104925. 
59.    Chiou HY, Wang CW, Chen SC, Wu DW, Lin HH, Liao WT, et al. Arsenic exposure and pulmonary fibrosis-evidences from a longitudinal cohort study and experimental models. SSRN 2022; 1-26.