Potential role of saffron and its components on miRNA levels in various disorders, a comprehensive review

Document Type : Review Article


1 Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran

2 Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran


The potential therapeutic benefits of saffron and its active constituents have been investigated for the treatment of numerous illnesses. In this review, the impacts of saffron and its essential components on the levels of microRNAs (miRNAs) in different diseases have been delineated. Relevant articles were obtained through databases such as PubMed, Web of Sciences, Scopus, and Google Scholar up to the end of November 2022. miRNA expression has been altered by saffron and its active substances (crocin, crocetin, and safranal) which has been of great advantage in treating diseases such as cardiovascular, type 2 diabetes, cancers, gastrointestinal and liver disorders, central and peripheral nervous system disorders, asthma, osteoarthritis, ischemic-reperfusion induced injury conditions, and renal disorder. This study uncovered the potential restorative advantages of saffron and its derivatives, in miRNA imbalances in a variety of diseases.


Main Subjects

1. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402-414.
2. Akhavanakbari G, Babapour B, Alipour MR, Keyhanmanesh R, Ahmadi M, Aslani MR. Effect of high fat diet on NF‐kB microRNA146a negative feedback loop in ovalbumin‐sensitized rats. Biofactors 2019; 45: 75-84.
3. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012; 3: 311-330.
4. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 2013; 8: e79467.
5. Bottini S, Hamouda-Tekaya N, Mategot R, Zaragosi L-E, Audebert S, Pisano S, et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8: 1189-1205.
6. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004; 432: 231-235.
7. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448: 83-86.
8. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One 2011; 6: e20220.
9. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18: 997-1006.
10.    Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015; 47: e184-e184.
11.    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7: e30679.
12.    Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012; 37: 460-465.
13.    Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
14.    Zhou S-s, Jin J-p, Wang J-q, Zhang Z-g, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39: 1073-1084.
15.    Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer 2008; 122: 969-977.
16.    Xiao L, Wang J-Y. RNA-binding proteins and microRNAs in gastrointestinal epithelial homeostasis and diseases. Curr Opin Pharmacol 2014; 19: 46-53.
17.    Hussein M, Magdy R. MicroRNAs in central nervous system disorders: Current advances in pathogenesis and treatment. Egypt J Neurol Psychiatr Neurosurg 2021; 57: 1-11.
18.    Deiuliis J. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes 2016; 40: 88-101.
19.    Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M, et al. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA Atheroscler 2017; 13: 245-252.
20.    Kothari D, Thakur R, Kumar R. Saffron (Crocus sativus L.): Gold of the spices—a comprehensive review. Hortic Environ Biotechnol 2021; 62: 661-677.
21.    El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, et al. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients 2022; 14: 597.
22.    Ghaffari S, Roshanravan N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother 2019; 109: 21-27.
23.    Kyriakoudi A, Tsimidou MZ, O’Callaghan YC, Galvin K, O’Brien NM. Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. J Agric Food Chem 2013; 61: 5318-5327.
24.    Lautenschläger M, Sendker J, Hüwel S, Galla H, Brandt S, Düfer M, et al. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine 2015; 22: 36-44.
25.    Boskabadi M, Aslani M, Mansouri F, Ameri S. Relaxant effect of Satureja hortensis on guinea pig tracheal chains and its possible mechanism (s). Daru J Pharm Sci 2007: 199-204.
26.    Saadat S, Aslani MR, Ghorani V, Keyhanmanesh R, Boskabady MH. The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytother Res 2021; 35: 2968-2996.
27.    Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35: 6813-6842.
28.    Ghasemi Z, Rezaee R, Aslani MR, Boskabady MH. Anti-inflammatory, anti-oxidant, and immunomodulatory activities of the genus Ferula and their constituents: A review. Iran J Basic Med Sic 2021; 24: 1613-1623.
29.    Abedi A, Ghobadi H, Sharghi A, Iranpour S, Fazlzadeh M, Aslani MR. Effect of saffron supplementation on oxidative stress markers (MDA, TAC, TOS, GPx, SOD, and pro-oxidant/antioxidant balance): An updated systematic review and meta-analysis of randomized placebo-controlled trials. Front Med 2023; 10: 1-13.
30.    Razavi BM, Hosseinzadeh H, Abnous K, Imenshahidi M. Protective effect of crocin on diazinon induced vascular toxicity in subchronic exposure in rat aorta ex-vivo. Drug Chem Toxicol 2014; 37: 378-383.
31.    Rahimi G, Shams S, Aslani MR. Effects of crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: A randomized, double‐blind, placebo‐controlled trial. Phytother Res 2022; 36: 2605-2615.
32.    Karuppusamy A, Krishnan A, Subramanian P, Anathy V. Oxidative stress related cellular metabolism in lung health and diseases. Front Pharmacol 2022: 4440.
33.    Ghobadi H, Abdollahi N, Madani H, Aslani MR. Effect of crocin from saffron (Crocus sativus L.) supplementation on oxidant/antioxidant markers, exercise capacity, and pulmonary function tests in COPD patients: A randomized, double-blind, placebo-controlled trial. Front Pharmacol 2022; 13: 884710.
34.    Aslani MR, Amani M, Masrori N, Boskabady MH, Ebrahimi HA, Chodari L. Crocin attenuates inflammation of lung tissue in ovalbumin‐sensitized mice by altering the expression of endoplasmic reticulum stress markers. Biofactors 2022; 48: 204-215.
35.    Boskabady M, Aslani M. Relaxant effect of Crocus sativus (saffron) on guinea‐pig tracheal chains and its possible mechanisms. J Pharm Pharmacol 2006; 58: 1385-1390.
36.    Saadat S, Yasavoli M, Gholamnezhad Z, Aslani MR, Boskabady MH. The relaxant effect of crocin on rat tracheal smooth muscle and its possible mechanisms. Iran J Pharm Res 2019; 18: 1358.
37.    Aslani MR, Jafari Z, Rahbarghazi R, Rezaie J, Delkhosh A, Ahmadi M. Effects of crocin on T-bet/GATA-3 ratio, and miR-146a and miR-106a expression levels in lung tissue of ovalbumin-sensitized mice. Iran J Basic Med Sic 2022; 25: 1267-1274.
38.    Aslani MR, Abdollahi N, Matin S, Zakeri A, Ghobadi H. Effect of crocin of Crocus sativus L. on serum inflammatory markers (IL-6 and TNF-α) in COPD patients: A randomized, double-blind, placebo-controlled trial. Br J Nutr 2023: 1-19.
39.    Rodriguez-Ruiz V, Barzegari A, Zuluaga M, Zunooni-Vahed S, Rahbar-Saadat Y, Letourneur D, et al. Potential of aqueous extract of saffron (Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. J Funct Foods 2016; 26: 123-134.
40.    Khatir SA, Bayatian A, Barzegari A, Roshanravan N, Safaiyan A, Pavon-Djavid G, et al. Saffron (Crocus sativus L.) supplements modulate circulating microRNA (miR-21) in atherosclerosis patients; a randomized, double-blind, placebo-controlled trial. Iran Red Crescent Med J 2018; 20: 1-10.
41.    Hussein SA, Ahmed TE, Amin A, Ali AH. The anti-inflammatory and anti-apoptotic role of crocin against expression of MMp-9, TIMP-1, MCP-1, caspase-3, PPARα in heart tissue, and metamorphoses of microRNA 188 in hyperhomocysteinemic rats. Recent Adv Biol Med 2019; 5: 10601.
42.    Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Abhari A, Chodari L, Mohaddes G. Cardioprotective effect of crocin combined with voluntary exercise in rat: Role of mir-126 and mir-210 in heart angiogenesis. Arq Bras Cardiol 2017; 109: 54-62.
43.    Wang X, Yuan B, Cheng B, Liu Y, Zhang B, Wang X, et al. Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock 2019; 51: 123-130.
44.    Michael CP, Derpapas M, Aravidou E, Sofopoulos M, Michael P, Polydorou A, et al. The carotenoid compound of saffron crocetin alleviates effects of ischemia reperfusion injury via a mechanism possibly involving MiR-127. Cureus 2020; 12: e6979.
45.    Sotoodeh Jahromi A, Moradzadeh M, Kargar M, Kafilzadeh F, Jamalidoust M. Effect of crocin on miRNA-15a expression in EBV infected transformed B cell. Pars J Med Sci 2020; 18: 21-31.
46.    Bi X, Jiang Z, Luan Z, Qiu D. Crocin exerts anti-proliferative and apoptotic effects on cutaneous squamous cell carcinoma via miR-320a/ATG2B. Bioengineered 2021; 12: 4569-4580.
47.    Mollaei H, Hoshyar R, Abedini MR, Safaralizadeh R. Crocin enhances cisplatin-induced chemosensitivity in human cervical cancer cell line. Int J Cancer Manag 2019; 12: e94909.
48.    Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomed Pharmacother 2017; 94: 307-316.
49.    Xu L, Song J-D. Crocin reversed the antitumor effects through up-regulation of MicroRNA-181a in cervical cancer cells. Food Sci Technol 2022; 42: e09422.
50.    Zhou Y, Xu Q, Shang J, Lu L, Chen G. Crocin inhibits the migration, invasion, and epithelial‐mesenchymal transition of gastric cancer cells via miR‐320/KLF5/HIF‐1α signaling. J Cell Physiol 2019; 234: 17876-17885.
51.    Tang Y, Yang H, Yu J, Li Z, Xu Q, Ding B, et al. Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Toxicol Appl Pharmacol 2022; 437: 115892.
52.    Dariushnejad H, Chodari L, Ghorbanzadeh V. The combination effect of voluntary exercise and crocin on angiogenic miRNAs in high-fat diet/low-dose STZ-induced type2 diabetes in Rats: miR-126 and miR-210. Pharm Sci 2020; 26: 379-385.
53.    Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates microRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. Iran J Basic Med Sic 2022; 25: 179.
54.    Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin attenuates endoplasmic reticulum stress in methylglyoxal-induced diabetic nephropathy in male mice: MicroRNAs alterations and glyoxalase 1-Nrf2 signaling pathways. Iran J Basic Med Sic 2022; 25.
55.    Chen Q, Xi X, Ma J, Wang X, Xia Y, Wang X, et al. The mechanism by which crocetin regulates the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis to inhibit high glucose-induced diabetic retinopathy. Exp Eye Res 2022; 222: 109157.
56.    Negarandeh Z, Salamat KM, Hosseini SA. The effect of eight weeks of endurance training with saffron on miR133bFC, miR29aFC in the hippocampus tissue and depression in rats with alzheimer’s disease. Jundishapur J Nat Pharm Prod 2021; 16: e103333.
57. Salama RM, Abdel-Latif GA, Abbas SS, Hekmat M, Schaalan MF. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020; 164: 107900.
58. Akbari G, Mard SA, Dianat M, Mansouri E. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid Med Cell Longev 2017; 2017: 1-11.
59. Hassani FV, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol 2017; 107: 395-405.
60. Khedr L, Rahmo RM, Farag DB, Schaalan MF, Hekmat M. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem Toxicol 2020; 140: 111307.
61. Mard SA, Akbari G, Dianat M, Mansouri E. Protective effects of crocin and zinc sulfate on hepatic ischemia-reperfusion injury in rats: a comparative experimental model study. Biomed Pharmacother 2017; 96: 48-55.
62. Mohebbi M, Atabaki M, Tavakkol-Afshari J, Shariati-Sarabi Z, Poursamimi J, Mohajeri SA, et al. Significant effect of crocin on the gene expression of microRNA-21 and microRNA-155 in patients with osteoarthritis. Iran J Allergy Asthma Immunol 2022; 21: 322-331.
63. Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, et al. miR-21 in ischemia/reperfusion injury: A double-edged sword? Physiol Genomics 2014; 46: 789-797.
64. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 2010; 3: 251-255.
65. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34: 2206-2216.
66. Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH. Repression of miR‐142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 2012; 4: 617-632.
67. Wang K, Liu C-Y, Zhou L-Y, Wang J-X, Wang M, Zhao B, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 2015; 6: 6779.
68. Qu M-J, Pan J-J, Shi X-J, Zhang Z-J, Tang Y-H, Yang G-Y. MicroRNA-126 is a prospective target for vascular. Neuroimmunol Neuroinflammation 2018; 5: 1-7.
69. Ali W, Mishra S, Rizvi A, Pradhan A, Perrone MA. Circulating microRNA-126 as an independent risk predictor of coronary artery disease: a case-control study. EJIFCC 2021; 32: 347-362.
70. Dang K, Myers KA. The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 2015; 16: 6353-6372.
71. Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL, et al. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Report 2018; 17: 5658-5665.
72. Hua C-C, Liu X-M, Liang L-R, Wang L-F, Zhong J-C. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases. Front Cardiovasc Med 2022; 8: 1-11.
73. Dong F, Dong S, Liang Y, Wang K, Qin Y, Zhao X. MiR-34a promotes myocardial infarction in rats by inhibiting the activity of SIRT1. Eur Rev Med Pharmacol Sci 2019; 23: 7059-7065.
74. Liu J, Zheng M, Tang Yl, Liang Xh, Yang Q. MicroRNAs, an active and versatile group in cancers. Int J Oral Sci 2011; 3: 165-175.
75. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008; 27: 3845-3855.
76. Druz A, Chen Y-C, Guha R, Betenbaugh M, Martin SE, Shiloach J. Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol 2013; 10: 287-300.
77. Khandelwal A, Sharma U, Barwal TS, Seam RK, Gupta M, Rana MK, et al. Circulating miR-320a acts as a tumor suppressor and prognostic factor in non-small cell lung cancer. Front Oncol 2021; 11: 645475.
78. Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res 2015; 34: 1-10.
79. Zhu Y, Zhao H, Rao M, Xu S. MicroRNA-365 inhibits proliferation, migration and invasion of glioma by targeting PIK3R3. Oncol Rep 2017; 37: 2185-2192.
80. Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. Int J Mol Sci 2020; 21: 1-25.
81. Kalfert D, Ludvikova M, Pesta M, Ludvik J, Dostalova L, Kholová I. Multifunctional roles of miR-34a in cancer: A review with the emphasis on head and neck squamous cell carcinoma and thyroid cancer with clinical implications. Diagnostics 2020; 10: 563-577.
82. Yin C, Lin X, Sun Y, Ji X. Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation. Eur J Med Res 2020; 25: 1-8.
83. Pishavar E, Behravan J. miR-126 as a therapeutic agent for diabetes mellitus. Curr Pharm Des 2017; 23: 3309-3314.
84. Grieco FA, Schiavo AA, Brozzi F, Juan-Mateu J, Bugliani M, Marchetti P, et al. The microRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells. J Mol Endocrinol 2019; 63: 139-149.
85. Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, et al. miRNAs as biomarkers in diabetes: moving towards precision medicine. Int J Mol Sci 2022; 23: 1-20.
86. Baltaci OF, Çolakoğlu Ş, Amuran GG, Aydin N, Sargin M, Korkmaz AK, et al. Exploring the role of miRNAs in the diagnosis of MODY3. Turk J Med Sci 2018; 48: 620-626.
87. Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10: 1-12.
88. Yu C-Y, Yang C-Y, Rui Z-L. MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci 2019; 224: 67-75.
89. Shen Y, Xu H, Pan X, Wu W, Wang H, Yan L, et al. miR‑34a and miR‑125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp Ther Med 2017; 14: 5589-5596.
90. Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122–a key factor and therapeutic target in liver disease. J Hepatol 2015; 62: 448-457.
91. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98.
92. Ding J, Li M, Wan X, Jin X, Chen S, Yu C, et al. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep 2015; 5: 13729.
93. Huang Y-H, Yang Y-L, Wang F-S. The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci 2018; 19: 1-8.
94. Sun J, Zhang H, Li L, Yu L, Fu L. MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncol Rep 2017; 37: 1698-1706.
95. Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci 2019; 20: 1-26.
96. Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis 2015; 48: 563-580.
97. Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 2007; 282: 12363-12367.
98. Zhao J, Zhou Y, Guo M, Yue D, Chen C, Liang G, et al. MicroRNA-7: Expression and function in brain physiological and pathological processes. Cell Biosci 2020; 10: 1-12.
99. Li L, Xu J, Wu M, Hu J. Protective role of microRNA-221 in Parkinson’s disease. Bratisl Lek Listy 2018; 119: 22-27.