Fucoidan alleviated autoimmune diabetes in NOD mice by regulating pancreatic autophagy through the AMPK/mTOR1/TFEB pathway

Document Type : Original Article


1 Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China

2 Qingdao No.17 Middle School, 80 Hangzhou Road, Qingdao 266031, Shandong Province, PR China

3 Department of Laboratory, Women and Children’s Hospital of Qingdao, Qingdao, Shandong 266034, PR China

4 Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, PR China



Objective(s): The present study investigated the effect and its underlying mechanisms of fucoidan on Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. 
Materials and Methods: Twenty 7-week-old NOD mice were used in this study, and randomly divided into two groups (10 mice in each group): the control group and the fucoidan treatment group (600 mg/kg. body weight). The weight gain, glucose tolerance, and fasting blood glucose level in NOD mice were detected to assess the development of diabetes. The intervention lasted for 5 weeks. The proportions of Th1/Th2 cells from spleen tissues were tested to determine the anti-inflammatory effect of fucoidan. Western blot was performed to investigate the expression levels of apoptotic markers and autophagic markers. Apoptotic cell staining was visualized through TdT-mediated dUTP nick-end labeling (TUNEL).
Results: The results suggested that fucoidan ameliorated T1DM, as evidenced by increased body weight and improved glycemic control of NOD mice. Fucoidan down-regulated the Th1/Th2 cells ratio and decreased Th1 type pro-inflammatory cytokines’ level. Fucoidan enhanced the mitochondrial autophagy level of pancreatic cells and increased the expressions of Beclin-1 and LC3B II/LC3B I. The expression of p-AMPK was up-regulated and p-mTOR1 was inhibited, which promoted the nucleation of transcription factor EB (TFEB), leading to autophagy. Moreover, fucoidan induced apoptosis of pancreatic tissue cells. The levels of cleaved caspase-9, cleaved caspase-3, and Bax were up-regulated after fucoidan treatment. 
Conclusion: Fucoidan could maintain pancreatic homeostasis and restore immune disorder through enhancing autophagy via the AMPK/mTOR1/TFEB pathway in pancreatic cells.


Main Subjects

1. Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, et al. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2020; 162: 108086.
2.    Loretelli C, Assi E, Seelam AJ, Ben Nasr M, Fiorina P. Cell therapy for type 1 diabetes. Expert Opin Biol Ther 2020; 20: 887-897.
3.    Lucier J, Weinstock RS. Diabetes mellitus type 1. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
4.    Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373: 510-516.
5.    Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol 2020; 8 :226-238.
6.    Deeks ED. Sotagliflozin: A review in type 1 diabetes. Drugs 2019; 79: 1977-1987.
7.    Sgrazzutti L, Sansone F, Attanasi M, Di Pillo S, Chiarelli F. Coaggregation of asthma and type 1 diabetes in children: A narrative review. Int Mol Sci 2021; 22: 5757-5770.
8.    Zhou N, Liu W, Zhang W, Liu Y, Li X, Wang Y, et al. Wip1 regulates the immunomodulatory effects of murine mesenchymal stem cells in type 1 diabetes mellitus via targeting IFN-α/BST2. Cell Death Discov 2021; 7: 326-334.
9.    van Dijk PR, Pasch A, van Ockenburg-Brunet SL, Waanders F, Eman Abdulle A, Muis MJ, et al. Thiols as markers of redox status in type 1 diabetes mellitus. Ther Adv Endocrinol Metab 2020; 11: 2042018820903641.
10.    Jörns A, Arndt T, Yamada S, Ishikawa D, Yoshimoto T, Terbish T, et al. Translation of curative therapy concepts with T cell and cytokine antibody combinations for type 1 diabetes reversal in the IDDM rat. J Mol Med (Berl) 2020; 98: 1125-1137.
11.    Jörns A, Ertekin Ü G, Arndt T, Terbish T, Wedekind D, Lenzen S. TNF-α antibody therapy in combination with the T-Cell-Specific antibody Anti-TCR reverses the diabetic metabolic state in the LEW.1AR1-iddm rat. Diabetes 2015; 64: 2880-2891.
12.    van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. fucoidan structure and activity in relation to Anti-Cancer mechanisms. Mar Drugs 2019; 17: 32-61.
13.    Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, et al. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022: 1-27.
14.    Apostolova E, Lukova P, Baldzhieva A, Katsarov P, Nikolova M, Iliev I, et al. Immunomodulatory and anti-inflammatory effects of fucoidan: A review. Polymers (Basel) 2020; 12: 2338-2359.
15.    Cheng Y, Sibusiso L, Hou L, Jiang H, Chen P, Zhang X, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int J Biol Macromol 2019; 131: 1162-1170.
16.    Shan X, Liu X, Hao J, Cai C, Fan F, Dun Y, et al. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int J Biol Macromol 2016; 82: 249-255.
17.    Daub CD, Mabate B, Malgas S, Pletschke BI. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. Int J Biol Macromol 2020; 151: 412-420.
18.    Lin HV, Tsou YC, Chen YT, Lu WJ, Hwang PA. Effects of low-molecular-weight fucoidan and high sability fcoxanthin on glucose hmeostasis, lpid mtabolism, and liver function in a muse mdel of type II diabetes. Mar Drugs 2017; 15: 133-146.
19.    Sim SY, Shin YE, Kim HK. Fucoidan from undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes. Nutr Res 2019; 65: 54-62.
20.    Aleissa MS, Alkahtani S, Abd Eldaim MA, Ahmed AM, Bungău SG, Almutairi B, et al. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B(1). Oxid Med Cell Longev 2020; 2020: 9316751.
21.    Xue M, Liang H, Ji X, Liu Y, Ge Y, Hou L, et al. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr Metab (Lond) 2019; 16: 87-101.
22.    Danobeitia JS, Chlebeck PJ, Shokolenko I, Ma X, Wilson G, Fernandez LA. Novel fusion protein targeting mitochondrial DNA improves pancreatic islet functional potency and islet transplantation outcomes. Cell Transplant 2017; 26: 1742-1754.
23.    Nahdi A, John A, Raza H. Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxid Med Cell Longev 2017; 2017: 7054272.
24.    Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O‘Connell JF, et al. Anti-inflammatory and pro-autophagy effects of the cannabinoid receptor CB2R: possibility of modulation in type 1 diabetes. Front Pharmacol 2021; 12: 809965.
25.    Khamis T, Abdelalim AF, Saeed AA, Edress NM, Nafea A, Ebian HF, et al. Breast milk MSCs upregulated β-cells PDX1, Ngn3, and PCNA expression via remodeling ER stress /inflammatory /apoptotic signaling pathways in type 1 diabetic rats. Eur J Pharmacol 2021; 905: 174188.
26.    Su J, Zhou L, Kong X, Yang X, Xiang X, Zhang Y, et al. Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus. J Diabetes Res 2013; 2013: 193461.
27.    Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17: 150-161.
28.    Marasco MR, Linnemann AK. β-Cell autophagy in diabetes pathogenesis. endocrinology 2018; 159: 2127-2141.
29.    Stone SI, Abreu D, McGill JB, Urano F. Monogenic and syndromic diabetes due to endoplasmic reticulum stress. J Diabetes Complications 2021; 35: 107618.
30.    Shi W, Guo Z, Yuan R. Testicular injury attenuated by rapamycin through induction of autophagy and inhibition of endoplasmic reticulum stress in streptozotocin- induced diabetic rats. Endocr Metab Immune Disord Drug Targets 2019; 19: 665-675.
31.    Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17: 655-680.
32.    Cetrullo S, D‘Adamo S, Tantini B, Borzi RM, Flamigni F. mTOR, AMPK, and sirt1: key players in metabolic stress management. Crit Rev Eukaryot Gene Expr 2015; 25: 59-75.
33.    Zhang Y, Aisker G, Dong H, Halemahebai G, Zhang Y, Tian L. Urolithin A suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy. Phytomedicine 2021; 93: 153741.
34.    Tao T, Xu H. Autophagy and obesity and diabetes. Adv Exp Med Biol 2020; 1207: 445-461.
35.    Zhang N, Xue M, Sun T, Yang J, Pei Z, Qin K. Fucoidan as an autophagy regulator: mechanisms and therapeutic potentials for cancer and other diseases. Nutr Cancer 2022; 74: 1568-1579.
36.    Zhao J, Hu B, Xiao H, Yang Q, Cao Q, Li X, et al. Fucoidan reduces lipid accumulation by promoting foam cell autophagy via TFEB. Carbohydr Polym 2021; 268: 118247.
37.    Zhang N, Xue M, Wang Q, Liang H, Yang J, Pei Z, et al. Inhibition of fucoidan on breast cancer cells and potential enhancement of their sensitivity to chemotherapy by regulating autophagy. Phytother Res 2021; 35: 6904-6917.
38.    Phull AR, Kim SJ. Fucoidan as bio-functional molecule: Insights into the anti-inflammatory potential and associated molecular mechanisms. J Funct Foods 2017; 38: 415-426.
39.    Shu Z, Shi X, Nie D, Guan B. Low-molecular-weight fucoidan inhibits the viability and invasiveness and triggers apoptosis in IL-1β-Treated human rheumatoid arthritis fibroblast synoviocytes. Inflammation 2015; 38: 1777-1786.
40.    Arif S, Gomez-Tourino I, Kamra Y, Pujol-Autonell I, Hanton E, Tree T, et al. GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia 2020; 63: 1186-1198.
41.    Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI, Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473: 4527-4550.
42.    Liu S, Yang J, Peng X, Li J, Zhu C. The natural product fucoidan inhibits proliferation and induces apoptosis of human ovarian cancer cells: focus on the PI3K/Akt signaling pathway. Cancer Manag Res 2020; 12: 6195-6207.
43.    Chantree P, Na-Bangchang K, Martviset P. Anticancer activity of fucoidan via apoptosis and cell cycle arrest on cholangiocarcinoma cell. Asian Pac J Cancer Prev 2021; 22: 209-217.
44.    Li Y, Chen Y. AMPK and autophagy. Adv Exp Med Biol 2019; 1206: 85-108.
45.    Rocchi A, He C. Emerging roles of autophagy in metabolism and metabolic disorders. Front Biol (Beijing) 2015; 10: 154-164.
46.    Mitchell T, Johnson MS, Ouyang X, Chacko BK, Mitra K, Lei X, et al. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells. Am J Physiol Endocrinol Metab 2013; 305: E585-E599.
47.    Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7: 2-11.
48.    Qi L, Ke L, Liu X, Liao L, Ke S, Liu X, et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur J Pharmacol 2016; 783: 23-32.
49.    Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, et al. cPKCγ deficiency exacerbates autophagy impairment and hyperphosphorylated tau buildup through the AMPK/mTOR pathway in mice with type 1 diabetes mellitus. Neurosci Bull 2022; 38: 1153-1169.
50.    Guo Y, Yu W, Sun D, Wang J, Li C, Zhang R, et al. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: Role of AMPK-regulated autophagy. Biochim Biophys Acta 2015; 1852: 319-331.
51.    Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12: 295-303.