Insights into the radiotherapy-induced deferentially expressed RNAs in colorectal cancer management

Document Type : Review Article

Authors

Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Abstract

Radiotherapy (RT) has been commonly applied to treat advanced local cancers. In radiation therapy, high doses of radiation are utilized to trigger cell death. Radiation often leads to DNA double-strand breakages (DSB), which causes the activation of downstream genes including those for non-coding RNAs (ncRNA) such as long non-coding and RNAsmicro RNAs. The consequence of RT significantly relies on the radiosensitivity of cancer cells, which is affected by multiple factors, including some proteins and cellular processes. Activation of these genes can cause cell cytotoxicity and indirectly damages the cells. Recent studies have shown that non-coding RNAs can play as radiosensitivity or radioinhibitory regulators in cancers by mechanisms such as cell cycle arrest or affecting the DNA damage repair systems. ncRNAs are also known to function as tumor suppressor genes or oncogenes in colorectal cancer and therefore are considered potential diagnostic biomarkers in disease detection. For example, the investigations have shown that miR-29a and miR-224 can be informative biomarkers for early detection or screening of CRC via a noninvasive method such as liquid biopsy. 
Here, we discuss ncRNAs involved in the radioresistance and radiosensitivity of CRC and highlight their predictive clinical value in response to RT. Accordingly, this review represents a principal guide in the context of three major types of ncRNAs with potential roles in the pathway of radiosensitivity and radioresistance, including miRNAs, lncRNAs, and circRNAs which can be considered a precious archivement in organizing additional studies and broadening views in this area. Our findings can also assist radiotherapists in predicting CRC patients’ response and, therefore, prognosis to radiation therapy, although, to achieve our goals in the clinic, we certainly need further studies.

Keywords

Main Subjects


1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66:683-691.
2. Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJ, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut 2015; 64:1637-1649.
3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209-249.
4. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. Aberrant expression of lncRNAs SNHG6, TRPM2-AS1, MIR4435-2HG, and hypomethylation of TRPM2-AS1 promoter in colorectal cancer. Cell Biol Int 2021; 45:2464-2478.
5. Thompson MK, Poortmans P, Chalmers AJ, Faivre-Finn C, Hall E, Huddart RA, et al. Practice-changing radiation therapy trials for the treatment of cancer: where are we 150 years after the birth of Marie Curie? Br J Cancer 2018; 119:389-407.
6. Williams JR, Zhang Y, Zhou H, Gridley DS, Koch CJ, Russell J, et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int J Radiat Biol 2008; 84:253-264.
7. Huang CM, Tsai HL, Chen YC, Huang CW, Li CC, Su WC, et al. Role of non-coding RNAs in radiosensitivity of colorectal cancer: A narrative review. Front Oncol 2022;12:889658-889668.
8. Pennisi E. ENCODE project writes eulogy for junk DNA. Science 2012;337:1159-1161.
9. Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M. Long noncoding RNAs in gastrointestinal cancer: tumor suppression versus tumor promotion. Dig Dis Sci 2021; 66:381-397.
10. Vijayan M, Reddy PH. Non-coding RNAs Based molecular links in type 2 diabetes, ischemic stroke, and vascular dementia. J Alzheimers Dis 2020; 75:353-383.
11. Statello L, Guo C-J, Chen L-L, Huarte M. Author Correction: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22: 2: 159.
12. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019;20:1836-1852.
13. Yin Y, Long J, He Q, Li Y, Liao Y, He P, et al. Emerging roles of circRNA in formation and progression of cancer. J Cancer 2019;10:5015-5021.
14. Tam SY, Wu VWC. A review on the special radiotherapy techniques of colorectal cancer. Front Oncol 2019;9:208-216.
15. Biermann J, Langen B, Nemes S, Holmberg E, Parris TZ, Rönnerman EW, et al. Radiation-induced genomic instability in breast carcinomas of the Swedish hemangioma cohort. Genes Chromosomes Cancer 2019;58:627-635.
16. Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 2008;7:1765-1771.
17. Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 2003;22:5848-2854.
18. Mozdarani H. Biological complexities in radiation carcinogenesis and cancer radiotherapy: Impact of new biological paradigms. Genes (Basel) 2012;3:90-114.
19. Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M. Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Mol Neurosci 2019;69:351-359.
20. Khodayi M, Khalaj-Kondori M, Feizi MAH, Jabarpour Bonyadi M, Talebi M. Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease. EXCLI J 2022;21:772-785.
21. Khalaj-Kondori M, Ghasemi T. Potential of hsa-miR200a-3p and hsa-miR502-3p as blood-based biomarker for Alzheimer’s disease. Mol Biol Rep 2022;49:11925-11932.
22. Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu CH, et al. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR‐449b‐5p. Thorac Cancer 2020;11:1801-1816.
23. Xiu D, Liu L, Cheng M, Sun X, Ma X. Knockdown of lncRNA TUG1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A axis. Onco Targets Ther 2020;13:2319-2331.
24. Gao J, Liu L, Li G, Cai M, Tan C, Han X, et al. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol 2019;126:994-1001.
25. Liu Y, Zhao J, Zhang W, Gan J, Hu CH, Huang G, et al. lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep 2015;5:10159-10170.
26. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007;67:11111-11116.
27. Jiang H, Hu X, Zhang H, Li W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 2017; 12: 1: 65.
28. Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 2019; 8: 328-340.
29. Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroenterol 2013; 19:9307-9317.
30. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation of microRNA in prostate cancer cell lines. Prostate 2008; 68: 1599-1606.
31. Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res 2013;73:6972-6986.
32. Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep 2010;23:997-1003.
33. Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol 2010; 29:553-561.
34. Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang S, et al. CircRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway. Aging (Albany NY) 2019; 11:12412-12427.
35. Guan Y, Cao Z, Du J, Liu T, Wang T. Circular RNA circPITX1 knockdown inhibits glycolysis to enhance radiosensitivity of glioma cells by miR-329-3p/NEK2 axis. Cancer Cell Int 2020; 20: 80-92.
36. Niu H, Zhang L, Chen Y-H, Yuan B-Y, Wu Z-F, Cheng JC-H, et al. Circular RNA TUBD1 acts as the miR-146a-5p sponge to affect the viability and pro-inflammatory cytokine production of LX-2 cells through the TLR4 pathway. Radiat Res 2020; 193:383-393.
37. Weigert V, Jost T, Hecht M, Knippertz I, Heinzerling L, Fietkau R, et al. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts. BMC Cancer 2020; 20:775-784.
38. Samadi P, Afshar S, Amini R, Najafi R, Mahdavinezhad A, Sedighi Pashaki A, et al. Let-7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin-like growth factor 1 receptor. J Cell Physiol 2019; 234:10718-10725.
39. Coleman CN, Eke I, Makinde AY, Chopra S, Demaria S, Formenti SC, et al. Radiation-induced adaptive response: New potential for cancer treatmentradiation-induced adaptive response. Clin Cancer Res 2020; 26:5781-5790.
40. Ma L, Men Y, Feng L, Kang J, Sun X, Yuan M, et al. A current review of dose-escalated radiotherapy in locally advanced non-small cell lung cancer. Radiol Oncol 2019; 53:6-14.
41. Wu Y, Pu N, Su W, Yang X, Xing C. Downregulation of miR-1 in colorectal cancer promotes radioresistance and aggressive phenotypes. J Cancer 2020;11:4832-4840.
42. Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, et al. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv Mater 2019; 31:e1802228.
43. Su TS, Liu QH, Zhu XF, Liang P, Liang SX, Lai L, et al. Optimal stereotactic body radiotherapy dosage for hepatocellular carcinoma: A multicenter study. Radiat Oncol 2021; 16: 79-87.
44. Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, et al. The roles of non-coding rnas in radiotherapy of gastrointestinal carcinoma. Front Cell Dev Biol 2022; 10: 862563-862578.
45. Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, et al. Screening of microRNA related to irradiation response and the regulation mechanism of miRNA-96-5p in rectal cancer cells. Front Oncol 2021; 11: 699475-699490.
46. Gao W, Qiao M, Luo K. Long noncoding RNA TP53TG1 contributes to radioresistance of glioma cells via miR-524-5p/RAB5A axis. Cancer Biother Radiopharm 2021; 36: 600-612.
47. Afshar S, Najafi R, Sedighi Pashaki A, Sharifi M, Nikzad S, Gholami MH, et al. MiR-185 enhances radiosensitivity of colorectal cancer cells by targeting IGF1R and IGF2. Biomed Pharmacother 2018; 106: 763-769.
48. Ji D, Zhan T, Li M, Yao Y, Jia J, Yi H, et al. Enhancement of sensitivity to chemo/radiation therapy by using miR-15b against DCLK1 in colorectal cancer. Stem Cell Rep 2018; 11:1506-1522.
49. Liao F, Chen X, Peng P, Dong W. RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer. Aging (Albany NY) 2020; 12:20512-20522.
50. Zhang Y, Zheng L, Huang J, Gao F, Lin X, He L, et al. MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One 2014; 9:e93917-93925.
51. Luo J, Liu L, Zhou N, Shen J, Sun Q, Zhu Y, et al. miR-519b-3p promotes responsiveness to preoperative chemoradiotherapy in rectal cancer patients by targeting ARID4B. Gene 2018; 655: 84-90.
52. Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7:16-27.
53. Luu C, Heinrich EL, Duldulao M, Arrington AK, Fakih M, Garcia-Aguilar J, et al. TP53 and let-7a micro-RNA regulate K-Ras activity in HCT116 colorectal cancer cells. PLoS One 2013; 8:e70604-70609.
54. Ruhl R, Rana S, Kelley K, Espinosa-Diez C, Hudson C, Lanciault C, et al. microRNA-451a regulates colorectal cancer proliferation in response to radiation. BMC Cancer 2018; 18:517-525.
55. Salendo J, Spitzner M, Kramer F, Zhang X, Jo P, Wolff HA, et al. Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g. Radiother Oncol 2013; 108:451-457.
56. Jahangiri B, Khalaj-Kondori M, Asadollahi E, Purrafee Dizaj L, Sadeghizadeh M. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm 2022; 627: 122214.
57. Yang XD, Xu XH, Zhang SY, Wu Y, Xing CG, Ru G, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res 2015; 5:545-559.
58. Zhang Y, Yu J, Liu H, Ma W, Yan L, Wang J, et al. Novel epigenetic CREB-miR-630 signaling axis regulates radiosensitivity in colorectal cancer. PLoS One 2015; 10:e0133870-0133881.
59. Zhu Y, Wang C, Becker SA, Hurst K, Nogueira LM, Findlay VJ, et al. miR-145 antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol Ther 2018; 26:744-754.
60. Chen L, Yuan D, Yang Y, Ren M. LincRNA-p21 enhances the sensitivity of radiotherapy for gastric cancer by targeting the beta-catenin signaling pathway. J Cell Biochem 2019; 120:6178-6187.
61. Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer 2019; 19:826.
62. Su F, Duan J, Zhu J, Fu H, Zheng X, Ge C. Long non‑coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation‑induced pyroptosis via microRNA‑448/gasdermin E in colorectal cancer cells. Int J Oncol 2021; 59: 1-11.
63. Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, et al. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol 2018; 97: 369-378.
64. Yu Q, Zhang W, Zhou X, Shen W, Xing C, Yang X. Regulation of lnc-TLCD2-1 on radiation sensitivity of colorectal cancer and comprehensive analysis of its mechanism. Front Oncol 2021; 11: 714159-714172.
65. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15: 2281-2290.
66. Samadi P, Afshar S, Amini R, Najafi R, Mahdavinezhad A, Sedighi Pashaki A, et al. Let‐7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin‐like growth factor 1 receptor. J Cell Physiol 2019; 234:10718-10725.
67. Yang X-D, Xu X-H, Zhang S-Y, Wu Y, Xing C-G, Ru G, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res 2015; 5:545-559.
68. Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, et al. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res 2020; 39:65-79.
69. Khoshinani HM, Afshar S, Pashaki AS, Mahdavinezhad A, Nikzad S, Najafi R, et al. Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line. Jpn J Radiol 2017; 35:664-672.
70. Liu R, Zhang Q, Shen L, Chen S, He J, Wang D, et al. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol 2020; 36:493-507.
71. Liu Y, Chen X, Chen X, Liu J, Gu H, Fan R, et al. Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis 2020; 11:1-14.
72. Chen Z, Cai X, Chang L, Xia Y, Wang L, Hou Y, et al. LINC00152 is a potential biomarker involved in the modulation of biological characteristics of residual colorectal cancer cells following chemoradiotherapy. Oncol Lett 2018; 15:4177-4184.
73. Wang J, Xu J, Fu J, Yuan D, Guo F, Zhou C, et al. MiR-29a regulates radiosensitivity in human intestinal cells by targeting PTEN gene. Radiat Res 2016; 186:292-301.
74. Li L, Jiang Z, Zou X, Hao T. Exosomal circ_IFT80 enhances tumorigenesis and suppresses radiosensitivity in colorectal cancer by regulating miR-296-5p/MSI1 axis. Cancer Manag Res 2021; 13: 1929-1941.
75. Xie Y, Liu JB, Li JM, Zhang C, Lu CX, Wen ZJ. [Effects of silencing circRNA ABCB10 expression on biological properties of colorectal cancer cells]. Zhonghua Zhong Liu Za Zhi 2021;43:449-456.
76. Yang P, Yang Y, An W, Xu J, Zhang G, Jie J, et al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol 2017; 32:837-845.
77. Zheng S, Zhong YF, Tan DM, Xu Y, Chen HX, Wang D. miR-183-5p enhances the radioresistance of colorectal cancer by directly targeting ATG5. J Biosci 2019; 44:1-11.
78. Xie Y, Liu JB, Li JM, Zhang C, Lu CX, Wen ZJ. [Silence of circBANP increases radiosensitivity of colorectal cancer cells and inhibits growth of subcutaneous xenografts by up-regulating miR-338-3p expression]. Zhonghua Zhong Liu Za Zhi 2021;43:533-540.
79. Jahangiri B, Khalaj-Kondori M, Asadollahi E, Sadeghizadeh M. Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J Cell Commun Signal 2019; 13:53-64.
80. Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020;19:1-26.
81. Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med 2015;13:252-264.
82. Liu R, Zhang Q, Shen L, Chen S, He J, Wang D, et al. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol 2020; 36: 493-507.
83. Liu Y, Chen X, Chen X, Liu J, Gu H, Fan R, et al. Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis 2020; 11:175-188.
84. Zuo Z, Ji S, He L, Zhang Y, Peng Z, Han J. LncRNA TTN‐AS1/miR‐134‐5p/PAK3 axis regulates the radiosensitivity of human large intestine cancer cells through the P21 pathway and AKT/GSK‐3β/β‐catenin pathway. Cell Biol Int 2020;44:2284-2292.
85. Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, et al. The roles of non-coding RNAs in radiotherapy of gastrointestinal carcinoma. Front Cell Dev Biol 2022; 10: 862563-862578.
86. Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H, et al. Long non-coding RNA LINC00152 in cancer: Roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 2022; 12: 960193-960210.
87. Mo W-Y, Cao S-Q. MiR-29a-3p: A potential biomarker and therapeutic target in colorectal cancer. Clin Transl Oncol 2023; 25:563-577.
88. Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne) 2020; 7: 612393-612400.
89. Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, et al. Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev 2015;16:3395-3402.
90. Xu X, Yuan J, Zuo Z, Yu Z, Liu Y, Fu C. [Expression of long non-coding RNA associated with radiotherapy-resistance in colorectal cancer cell lines with different radiosensitivity]. Zhonghua Wei Chang Wai Ke Za Zhi 2014; 17:1096-1100.
91. Ji D, Zhan T, Li M, Yao Y, Jia J, Yi H, et al. Enhancement of sensitivity to chemo/radiation therapy by using miR-15b against DCLK1 in colorectal cancer. Stem Cell Rep 2018; 11:1506-1522.
92. Zheng S, Zhong Y-F, Tan D-M, Xu Y, Chen H-X, Wang D. miR-183-5p enhances the radioresistance of colorectal cancer by directly targeting ATG5. J Biosci 2019; 44: 1-11.
93. Li Y, Castellano JJ, Moreno I, Martínez-Rodenas F, Hernandez R, Canals J, et al. LincRNA-p21 levels relates to survival and post-operative radiotherapy benefit in rectal cancer patients. Life 2020; 10: 172-183.
94. Zhang Y, Guan B, Yong W, Du F, Zhuang J, Yang Y, et al. LncRNAs associated with chemoradiotherapy response and prognosis in locally advanced rectal cancer. J Inflamm Res 2021; 14: 6275-6292.
95. Chen L-J, Chen X, Niu X-H, Peng X-F. LncRNAs in colorectal cancer: biomarkers to therapeutic targets. Clin Chim Acta 2023;543:117305.
96. Xian Z, Hu B, Wang T, Zeng J, Cai J, Zou Q, et al. lncRNA UCA1 contributes to 5-fluorouracil resistance of colorectal cancer cells through miR-23b-3p/ZNF281 axis. Onco Targets Ther 2020; 13: 7571-7583.
97. Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 2019; 25: 859-874.
98. Zhu L, Zhou D, Guo T, Chen W, Ding Y, Li W, et al. LncRNA GAS5 inhibits Invasion and migration of lung Cancer through influencing EMT process. J Cancer 2021; 12: 11: 3291-3298.