Polyherbal extract improves glycometabolic control in alloxan-induced diabetic rats via down-regulating the MAPK/JNK pathway, modulating Nrf-2/Keap-1 expression, and stimulating insulin signaling

Document Type : Original Article

Authors

1 Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad-38040, Faisalabad, Punjab, Pakistan

2 Department of Pharmacy, Riphah International University, Faisalabad-38000, Faisalabad, Punjab, Pakistan

3 Department of Pharmacology, Faculty of Pharmacy, University of Lahore-54590, Lahore, Punjab, Pakistan

Abstract

Objective(s): This study focused on the evaluation of antioxidant and antidiabetic activities of polyherbal extract (PHE), containing Cassia absus (L.), Gymnema sylvestre (R. Br.), Nigella sativa (L.), and Piper nigrum (L.), in alloxan-induced diabetes model.
Materials and Methods: In vitro, HPLC characterization, DPPH scavenging assay, and α-amylase inhibition test were conducted. In vivo, acute oral toxicity of PHE was assessed. Alloxan-induced diabetic Wistar rats (n=6) were orally treated with PHE (200, 400, and 600 mg/kg/day) and glibenclamide (GLB; 10 mg/kg/day) for six consecutive weeks. Then, biochemical biomarkers, oxidative stress parameters, histopathological examination, and mRNA expression levels (RT-qPCR) were determined.
Results: The presence of polyphenols in PHE was confirmed in correlation to marked DPPH scavenging (IC50: 1.60 mg/ml) and α-amylase inhibition (IC50: 0.82 mg/ml). PHE demonstrated no toxicity in rats up to a dose of 2000 mg/kg. In diabetic rats, PHE dose-dependently ameliorated the serum levels of glucose, insulin, glycated hemoglobin A1c (HbA1c), leptin, and glucokinase (GCK). Also, PHE substantially alleviated serum inflammatory markers (TNF-α and CRP) and oxidative stress indicators (MDA, SOD, and CAT) in pancreatic tissues. PHE, particularly at 600 mg/kg, attenuated cellular oxidative stress via modulating the mRNA expression levels of genes regulating MAPK/JNK (Mapk-8, Traf-4, and Traf-6) and Nrf-2/Keap-1 pathways and promoted insulin signaling through up-regulating insulin signaling cascade (Pdx-1, Ins-1, and Ins-2), as compared to GLB. Furthermore, histopathological findings supported the aforementioned results.
Conclusion: Our study suggests that polyherbal extract has promising antioxidant and antidiabetic activities by modulating the MAPK/JNK, Nrf-2/Keap-1, and insulin signaling pathways.

Keywords

Main Subjects


Holman N, Wild SH, Khunti K, Knighton P, O’Keefe J, Bakhai C, et al. Incidence and characteristics of remission of type 2 diabetes in England: A cohort study using the national diabetes audit. Diabetes Care 2022; 45:1151-1161.
2.    Ke C, Narayan KV, Chan JC, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol 2022; 18:413-432.
3.    Lima JE, Moreira NC, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat Res Genet Toxicol Environ Mutagen 2022; 874:503437.
4.    Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 2022; 27:950-969.
5.    Dowlatshahi S, Patham B, Shakil J, Zahid M, Arunchalam P, Kansara A, et al. Management of hyperglycemia in the noncritical care setting: A real-world case-based approach with alternative insulin-and noninsulin-based strategies. Diabetes Spectr 2022; 35:420-426.
6.    Anand U, Tudu CK, Nandy S, Sunita K, Tripathi V, Loake GJ, et al. Ethnodermatological use of medicinal plants in India: From ayurvedic formulations to clinical perspectives–A review. J Ethnopharmacol 2022; 284:114744.
7.    Siddiqui SA, Khan S, Wani SA. Controlling diabetes with the aid of medicinal herbs: A critical compilation of a decade of research. Crit Rev Food Sci Nutr 2022; 1-15.
8.    Gheda S, Naby MA, Mohamed T, Pereira L, Khamis A. Antidiabetic and anti-oxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environ Sci Pollut Res 2021; 28:22886-22901.
9.    Aslam B, Hussain A. Phytochemical characterization and solvent fraction depending in vitro anti-oxidant activities of Cassia absus, Gymnema sylvestre, Nigella sativa and Piper nigrum. Rev Chim 2021; 72:38-49.
10.    Hussain F, Shahid M, Javed K. Anti-oxidant, antiglycation and alpha Amylase inhibitory activities of Cassia absus seeds. Int Sci Org Curr Sci Perspect 2015; 2:5-9.
11.    Hassan F, Aslam B, Muhammad F, Faisal MN. Hypoglycemic properties of Sphaeranthus indicus and Nigella sativa in alloxan induced diabetes mellitus in rats; A new therapeutic horizon. Pak Vet J 2022; 42:141-146.
12.    Bandigari P, Mohammed A, Arikilla S, Chanduri B, Yemba S, Chinnala K, et al. Evaluation of anti-diabetic activity of seeds of black pepper in streptozotocin-induced diabetic rats. European J Biomed Pharm Sci 2018; 2018:2349-8870.
13.    Gaytán Martínez LA, Sánchez-Ruiz LA, Zuñiga LY, González-Ortiz M, Martínez-Abundis E. Effect of Gymnema sylvestre administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J Med Food 2021; 24:28-32.
14.    Suvarna R, Shenoy RP, Hadapad BS, Nayak AV. Effectiveness of polyherbal formulations for the treatment of type 2 Diabetes mellitus-A systematic review and meta-analysis. J Ayurveda Integr Med 2021; 12:213-222.
15.    Anwar S, Kausar MA, Parveen K, Zahra A, Ali A, Badraoui R, et al. Polyherbal formulation: The studies towards identification of composition and their biological activities. J King Saud Univ Sci 2022; 34:102256.
16.    Paul S, Majumdar M. Comparative study of six antidiabetic polyherbal formulation for its multimodal approaches in diabetes management. 3 Biotech 2022; 12:114.
17.    Prabhakaran G, Bhore SJ, Ravichandran M. Development and evaluation of polyherbal molluscicidal extracts for control of apple snail (Pomacea maculata). Agriculture 2017; 7:22-32.
18.    Hussain A, Aslam B, Muhammad F, Faisal MN, Kousar S, Mushtaq A, et al. Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress. Iran J Basic Med Sci 2021; 24:951-961.
19.    Mošovska S, Novakova D, Kaliňak M. Anti-oxidant activity of ginger extract and identification of its active components. Acta Chim Slovaca 2015; 8:115-119.
20.    Kavitha S, Rameshkannan DM, Mani DP. Analysis of anti-oxidant and antidiabetic activity of Piper nigrum leaf extract by in-vitro assay. J Pharm Bio Sci 2018; 13:53-56.
21.    Adeosun AM, Asejeje FO, Ighodaro OM, Oluwole BA, Akinloye OA. Hypoglycemic, antidyslipidemic, and anti-oxidant activities of methanol extract of Struchium sparganophora leaves in alloxan-induced oxidative stress-mediated diabetes in rats. Future J Pharm Sci 2020; 6:1-7. 
22.    Okokon JE, Nyong ME. Antidiabetic and hypolipidemic activities of Zea mays husk extract and fractions. J Herbs Spices Med Plants 2018; 24:134-150.
23.    Saleem U, Akhtar R, Anwar F, Shah MA, Chaudary Z, Ayaz M, et al. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis 2021; 36:889-900.
24.    Sarfraz M, Khaliq T, Khan JA, Aslam B. Effect of aqueous extract of black pepper and ajwa seed on liver enzymes in alloxan-induced diabetic Wister albino rats. Saudi Pharm J 2017; 25:449-452.
25.    Muller SD, Florentino D, Ortmann CF, Martins FA, Danielski LG, Michels M, et al. Anti-inflammatory and anti-oxidant activities of aqueous extract of Cecropia glaziovii leaves. J Ethnopharmacol 2016; 185:255-262.
26.    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47:469-474.
27.    Adeyemi WJ, Olayaki LA. Diclofenac–induced hepatotoxicity: Low dose of omega-3 fatty acids have more protective effects. Toxicol Rep 2018; 5:90-95. 
28.    Macdonald Ighodaro O, Mohammed Adeosun A, Adeboye Akinloye O. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 2017; 53:365-374.
29.    Mondol D, Islam MN, Biswas S, Jodder P, Sana S, Saleh MA, et al. Investigation of the synergistic effect of glimepiride and rosuvastatin on alloxan-induced diabetic rat. J Diabetes Metab Disord 2020; 19:1415-1422.
30.    Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, et al. Anti-oxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018; 40:68-75.
31.    Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathan U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Dis 2013; 2:304-309.
32.    Singh B, Kumar A, Singh H, Kaur S, Arora S, Singh B. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and up-regulation of NF‐κB, TNF‐α and COX‐2 proteins in rats. Phytother Res 2022; 36:1338-1352.
33.    Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020; 73:152906.
34.    Salau VF, Erukainure OL, Koorbanally NA, Chukwuma CI, Islam MS. Cinnamic acid improves glucose uptake and utilization with concomitant improvement of redox and bioenergetic homeostasis, while modulating glucose-lipid metabolic switch in isolated psoas muscle. Rev Bras Farmacogn 2022; 32:931-941.
35.    Kuo FY, Cheng KC, Li Y, Cheng JT. Oral glucose tolerance test in diabetes, the old method revisited. World J Diabetes 2021; 12:786-793.
36.    Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39:1176-1188.
37.    Toulis KA, Nirantharakumar K, Pourzitaki C, Barnett AH, Tahrani AA. Glucokinase activators for type 2 diabetes: Challenges and future developments. Drugs 2020; 80:467-475.
38.    Bashir H, Bhat SA, Majid S, Hamid R, Koul RK, Rehman MU, et al. Role of inflammatory mediators (TNF-α, IL-6, CRP), biochemical and hematological parameters in type 2 diabetes mellitus patients of Kashmir, India. Med J Islam Repub Iran 2020; 34:5-11.
39.    Lee JW, Park SH. Association between depression and nonalcoholic fatty liver disease: Contributions of insulin resistance and inflammation. J Affect Dis 2021; 278:259-263.
40.    Elimam H, Abdulla AM, Taha IM. Inflammatory markers and control of type 2 diabetes mellitus. Diabetes Metab Syndr: Clin Res Rev 2019; 13:800-804.
41.    Ishtiaq SM, Khan JA, Muhammad F, Shahid M. Peroxisome proliferator-activated receptor gamma agonists modulate high-fat diet and carbon tetrachloride-induced non-alcoholic fatty liver disease pathophysiology and transcriptional expression of inflammatory markers in a murine model. Pak Vet J 2022; 42:292-299.
42.    Widowati W, Prahastuti S, Hidayat M, Hasiana ST, Wahyudianingsih R, Afifah E, et al. Protective effect of ethanolic extract of Jati Belanda (Guazuma ulmifolia L.) by inhibiting oxidative stress and inflammatory processes in cisplatin-induced nephrotoxicity in rats. Pak Vet J 2022; 42:376-382.
43.    Leenders F, Groen N, de Graaf N, Engelse MA, Rabelink TJ, de Koning EJ, et al. Oxidative stress leads to β-cell dysfunction through loss of β-cell identity. Front Immunol 2021; 12:690379.
44.    Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int J Mol Sci 2021; 22:1509-1526.
45.    Nie T, Cooper GJ. Mechanisms underlying the antidiabetic activities of polyphenolic compounds: A review. Front Pharmacol 2021; 12:798329.
46.    Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates MicroRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. Iran J Basic Med Sci 2022; 25:179-186.
47.    Pujimulyani D, Yulianto WA, Setyowati A, Prastyo P, Windrayahya S, Maruf A. White saffron (Curcuma mangga Val.) attenuates diabetes and improves pancreatic β-cell regeneration in streptozotocin-induced diabetic rats. Toxicol Rep 2022; 9:1213-1221.
48.    Semwal DK, Kumar A, Aswal S, Chauhan A, Semwal RB. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β‐cells and restoring their dysfunction. Phytother Res 2021; 35:1218-1229.
49.    Ha J, Kang E, Seo J, Cho S. Phosphorylation dynamics of JNK signaling: Effects of dual-specificity phosphatases (DUSPs) on the JNK pathway. Int J Mol Sci 2019; 20:6157-6175.
50.    Yung JH, Giacca A. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes. Cells 2020; 9:706-736.
51.    Luo J, Xiang Y, Xu X, Fang D, Li D, Ni F, et al. High glucose-induced ROS production stimulates proliferation of pancreatic cancer via inactivating the JNK pathway. Oxid Med Cell Longev 2018; 2018:6917206.
52.    Lanuza-Masdeu J, Arévalo MI, Vila C, Barberà A, Gomis R, Caelles C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 2013; 62:2308-2317.
53.    Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol Res 2015; 91:104-114.
54.    David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017; 2017:4826724.
55.    Rahimi G, Heydari S, Rahimi B, Abedpoor N, Niktab I, Safaeinejad Z, et al. A combination of herbal compound (SPTC) along with exercise or metformin more efficiently alleviated diabetic complications through down-regulation of stress oxidative pathway upon activating Nrf2-Keap1 axis in AGE rich diet-induced type 2 diabetic mice. Nutr Metab 2021; 18:1-4.
56.    Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623.
57.    Bahrami G, Sajadimajd S, Mohammadi B, Hatami R, Miraghaee S, Keshavarzi S, et al. Anti-diabetic effect of a novel oligosaccharide isolated from Rosa canina via modulation of DNA methylation in streptozotocin-diabetic rats. DARU J Pharm Sci 2020; 28:581-590.