Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles

Document Type : Original Article


1 Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

3 Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran

5 Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran

6 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated. 
Materials and Methods: Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line. 
Results: The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212–291 nm and 267–321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity. 
Conclusion: The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs’ structure in order to obtain nanoparticles with better biological function in the gene delivery process.


Main Subjects

1. Li Y, Zhang K, Liu P, Chen M, Zhong Y, Ye Q, et al. Encapsulation of plasmid DNA by nanoscale metal–organic frameworks for efficient gene transportation and expression. Adv Mater 2019; 31:1901570.
2. Hamed EM, Meabed MH, Aly UF, Hussein RR. Recent progress in gene therapy and other targeted therapeutic approaches for beta thalassemia. Curr Drug Targets 2019; 20:1603-1623.
3. Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, et al. The horizon of gene therapy in modern medicine: advances and challenges. in: Turksen K, editor. Cell Biology and Translational Medicine. Volume 8: Stem Cells in Regenerative Medicine, Springer, Cham; 2020. p. 33-64.
4. Xue J, Chen K, Hu H, Gopinath SC. Progress in gene therapy treatments for prostate cancer. Biotechnol Appl Biochem 2022; 69:1166-1175.
5. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15:541-555.
6. Breunig M, Lungwitz U, Liebl R, Fontanari C, Klar J, Kurtz A, et al. Gene delivery with low molecular weight linear polyethylenimines. J Gene Med 2005 2005; 7:1287-1298.
7. Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, et al. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. Int J Polym Mater Polym Biomater 2022; 71:246-265. 
8. Chen Q, Xu M, Zheng W, Xu T, Deng H, Liu J. Se/Ru-decorated porous metal–organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl Mater Interfaces 2017; 9:6712-6724.
9. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 2009; 11:671-681.
10. Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano 2019; 13:3754-3782.
11. Alinejad-Mofrad E, Malaekeh-Nikouei B, Gholami L, Mousavi S, Sadeghnia H, Mohajeri M, et al. Evaluation and comparison of cytotoxicity, genotoxicity, and apoptotic effects of poly-l-lysine/plasmid DNA micro-and nanoparticles. Hum Exp Toxicol 2019; 38:983-991.
12. Patil S, Gao Y-G, Lin X, Li Y, Dang K, Tian Y, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci 2019; 20:5491.
13. He Y, Li D, Wu L, Yin X, Zhang X, Patterson LH, et al. Metal‐Organic Frameworks for Gene Therapy and Detection. Adv Funct Mater. 2023; 33:2212277.
14. Dong S, Chen Q, Li W, Jiang Z, Ma J, Gao H. A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. J Mater Chem B 2017; 5:8322-8329.
15. Sun P, Li Z, Wang J, Gao H, Yang X, Wu S, et al. Transcellular delivery of messenger RNA payloads by a cationic supramolecular MOF platform. Chem Commun 2018; 54:11304-11307.
16. Guo A, Durymanov M, Permyakova A, Sene S, Serre C, Reineke J. Metal organic framework (MOF) particles as potential bacteria-mimicking delivery systems for infectious diseases: characterization and cellular internalization in alveolar macrophages. Pharm Res 2019; 36:1-11.
17. Chu C, Su M, Zhu J, Li D, Cheng H, Chen X, et al. Metal-organic framework nanoparticle-based biomineralization: a new strategy toward cancer treatment. Theranostics 2019; 9:3134.
18. Teplensky MH, Fantham M, Poudel C, Hockings C, Lu M, Guna A, et al. A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem 2019; 5:2926-2941.
19. McGuire CV, Forgan RS. The surface chemistry of metal–organic frameworks. ChemComm 2015; 51:5199-5217.
20. Beg S, Rahman M, Jain A, Saini S, Midoux P, Pichon C, et al. Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications. Drug Discov Today 2017; 22:625-637.
21. Rabiee N, Bagherzadeh M, Heidarian Haris M, Ghadiri AM, Matloubi Moghaddam F, Fatahi Y, et al. Polymer-coated NH2-UiO-66 for the codelivery of DOX/pCRISPR. ACS Appl Mater Interfaces 2021; 13:10796-10811.
22. Zhang H-T, Zhang J-W, Huang G, Du Z-Y, Jiang H-L. An amine-functionalized metal–organic framework as a sensing platform for DNA detection. ChemComm 2014; 50:12069-12072.
23. Chang J, Wang X, Wang J, Li H, Li F. Nucleic acid-functionalized metal–organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 2019; 91:3604-3610.
24. Wu Y, Han J, Xue P, Xu R, Kang Y. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 2015; 7:1753-1759.
25. He C, Lu K, Liu D, Lin W. Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 2014; 136:5181-5184.
26. Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, et al. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018; 9:1293.
27. Linnane E, Fairen-Jimenez D. Metal-Organic Frameworks as Delivery Systems of Small Drugs and Biological Gases. In: Horcajada Cortés P, Rojas Macías S, editors. Metal-Organic Frameworks in Biomedical and Environmental Field, Springer, Cham; 2021. p. 349– 378. 
28. Nian F, Huang Y, Song M, Chen J-J, Xue J. A novel fabricated material with divergent chemical handles based on UiO-66 and used for targeted photodynamic therapy. J Mater Chem B 2017; 5:6227-6232.
29. OSKOUEI R, Dehshahri A, Shier WT, Ramezani M. Modified polyethylenimine: Self assemble nanoparticle forming polymer for pDNA delivery. Iran J Basic Med Sci 2008; 11:33-40.
30. Kuo W-T, Huang H-Y, Chou M-J, Wu M-C, Huang Y-Y. Surface modification of gelatin nanoparticles with polyethylenimine as gene vector. J Nanomater 2011; 2011:1-5.
31. Liu M, Zhang L, Zhao Q, Jiang X, Wu L, Hu Y. Lower-molecular-weight chitosan-treated polyethyleneimine: a practical strategy for gene delivery to mesenchymal stem cells. Cell Physiol Biochem 2018; 50:1255-1269.
32.Thapa B, Narain R. Mechanism, current challenges and new approaches for non viral gene delivery. in: Narain R, editor. Polymers and Nanomaterials for Gene Therapy, Woodhead Publishing, Elsevier; 2016.p. 1-27.
33. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives. ChemComm 2013; 49:9449-9451.
34. Yang F, Xie S, Wang G, Yu CW, Liu H, Liu Y. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution. Environ Sci Pollut Res Int 2020; 27:20246-20258.
35. He X, Deng F, Shen T, Yang L, Chen D, Luo J, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J Colloid Interface Sci 2019; 539:223-234.
36. Liu B, Li D, Yao J, Sun H. Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles. Sep Purif Technol 2020; 239:116519.
37. Cho KY, Seo JY, Kim H-J, Pai SJ, Do XH, Yoon HG, et al. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr (IV)-based metal-organic framework (MOF) catalysts. Appl Catal B 2019; 245:635-647.
38. Zhu J, Wu L, Bu Z, Jie S, Li B-G. Polyethyleneimine-modified UiO-66-NH2 (Zr) metal–organic frameworks: preparation and enhanced CO2 selective adsorption. ACS Omega 2019; 4:3188-3197.
39. Molavi H, Eskandari A, Shojaei A, Mousavi SA. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr). Microporous Mesoporous Mater 2018; 257:193-201.
40. Liu B, Li D, Yao J, Sun H. Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO‐66 particles. J Appl Polym Sci 2020; 137:49068.
41. Sumisha A, Arthanareeswaran G, Ismail AF, Kumar DP, Shankar MV. Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv 2015; 5:39464-39473.
42. Zheng B, Yang S, Tian Q, Xie Y, Zhang S, Lee RJ. Delivery of antisense oligonucleotide LOR-2501 using transferrin-conjugated polyethylenimine-based lipid nanoparticle. Anticancer Res 2019; 39:1785-1793.
43. Ringaci A, Yaremenko A, Shevchenko K, Zvereva S, Nikitin M. Metal-organic frameworks for simultaneous gene and small molecule delivery in vitro and in vivo. J Chem Eng 2021; 418:129386.
44. Poddar A, Conesa JJ, Liang K, Dhakal S, Reineck P, Bryant G, et al. Encapsulation, visualization and expression of genes with biomimetically mineralized zeolitic imidazolate framework‐8 (ZIF‐8). Small 2019; 15:1902268.
45. Abdelhamid HN, Dowaidar M, Langel Ü. Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous Mesoporous Mater 2020; 302:110200.
46. Jiang H-L, Kim Y-K, Arote R, Nah J-W, Cho M-H, Choi Y-J, et al. Chitosan-graft-polyethylenimine as a gene carrier. JCR 2007; 117:273-280.
47. Zohrab F, Asoodeh A, Jalili A, Darroudi M, Oskuee RK. Brevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector. Iran J Basic Med Sci 2019; 22:1026.
48. Akbarzadeh M, Oskuee RK, Gholami L, Mahmoudi A, Malaekeh-Nikouei B. BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine. J Drug Deliv Sci Technol 2019; 53:101154.
49. Askarian S, Abnous K, Taghavi S, Oskuee RK, Ramezani M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf B Biointerfaces 2015; 136:355-364.
50. Taghavi S, HashemNia A, Mosaffa F, Askarian S, Abnous K, Ramezani M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf B Biointerfaces 2016; 140:28-39.
51. Bueken B, Van Velthoven N, Willhammar T, Stassin T, Stassen I, Keen DA, et al. Gel-based morphological design of zirconium metal–organic frameworks. Chem Sci 2017; 8:3939-3948.
52. Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr C-M. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 2013; 7:1961-1973.
53. Shi J, Choi JL, Chou B, Johnson RN, Schellinger JG, Pun SH. Effect of polyplex morphology on cellular uptake, intracellular trafficking, and transgene expression. ACS Nano 2013; 7:10612-10620.
54. Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018; 13:1-12.
55. Morris W, Briley WE, Auyeung E, Cabezas MD, Mirkin CA. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J Am Chem Soc 2014; 136:7261-7264.
56. Xue YN, Liu M, Peng L, Huang SW, Zhuo RX. Improving gene delivery efficiency of bioreducible poly (amidoamine) s via grafting with dendritic poly (amidoamine) s. Macromol Biosci 2010; 10:404-414.
57. Sadeghpour H, Khalvati B, Entezar-Almahdi E, Savadi N, Hossaini Alhashemi S, Raoufi M, et al. Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep 2018; 8:6842.
58. Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918.
59. Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery systems for nucleic acids and proteins: Barriers, cell capture pathways and nanocarriers. Pharmaceutics 2021; 13:428.
60. Rennick JJ, Johnston AP, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol 2021; 16:266-276.
61. de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434.
62. Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK. DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc 2019; 141:2215-2219.
63. Hsiao I-L, Gramatke AM, Joksimovic R, Sokolowski M, Gradzielski M, Haase A. Size and cell type dependent uptake of silica nanoparticles. J Nanomed Nanotechnol 2014; 5:1.
64. Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA. Time and space resolved uptake study of silica nanoparticles by human cells. Mol Biosyst 2011; 7:371-378.
65. Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011; 40:233-245.