Classification, location, and intensity of granules in retinal pigment epithelium following sodium iodate injection in rat animal model

Document Type : Original Article


1 Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran

2 Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran

3 Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran

4 Neurosciences Research Center, Iran University of Medical Sciences, Tehran, Iran


Objective(s): Age-related macular degeneration (AMD) is one of the eye diseases that can affect a person’s central vision. Retinal pigment epithelium (RPE) cells are damaged in this medical condition and some pigments are presented in these cells. Here, we aimed to investigate melanin and lipofuscin granules of RPE cells as a precursor of AMD. 
Materials and Methods: Hooded rats (n=18) were divided into two groups and received 100 μl of sodium iodate (SI) into the retro-orbital sinus of their eyes at 40 and 60 mg/kg doses. The total number of melanin and lipofuscin granules, different types of granules, cytoplasmic dispersion of granules as well as morphological changes in the shape and number of nuclei of RPE cells were evaluated over the course of 1-30 days.
Results: The total number of melanin pigments increases over time at a dose of 40 mg/kg and decreases at a dose of 60 mg/kg. Also, the total number of lipofuscin granules in 40 mg/kg increases over time and decreases in 60 mg/kg. Autofluorescent intensity (AF) is also increased at 40 mg/kg, but at 60 mg/kg, the highest intensity is on day 7. Also, the highest number of multinucleated giant cells was on day 7 at 60 mg/kg and the most changes in cell appearance due to sodium iodate injection were seen on the first day after injection. 
Conclusion: We demonstrated that granules and autofluorescent intensity appear to decrease at high doses of sodium iodate, which is similar to the advanced stage of the AMD disease, where the number of granules and AF intensity increase in the middle and even early stages of the disease.


Main Subjects

1.    Evans JR. Risk factors for age-related macular degeneration. Prog Retinal Res 2001;20:227-253.
2.    Hernández-Zimbrón LF, Zamora-Alvarado R, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H, et al. Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid Med Cell Longev 2018;2018: 8374647.
3.    Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023;19:388-400.
4.    Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. The Lancet Global Health 2014;2:e106-e116.
5.    Aboutaleb Kadkhodaeian H, Tiraihi T, Ahmadieh H, Ziaei H, Daftarian N, Taheri T. Improvement of photoreceptor function following transplantation of NS-derived RPE cells into the subretinal space of an animal (rat) model of retinal degeneration. Acta Sci Ophthalmol 2022;5:29-49.
6.    Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch’s membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2020:76:100803.
7.    Gullapalli VK, Zarbin MA. New prospects for retinal pigment epithelium transplantation. Asia-Pac J Ophthalmol (Phila) 2022; 11:302-313.
8.    Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012;33:487-509.
9.    Kadkhodaeian HA, Tiraihi T, Daftarian N, Ahmadieh H, Ziaei H, Taheri T. Histological and electrophysiological changes in the retinal pigment epithelium after injection of sodium iodate in the orbital venus plexus of pigmented rats. J Ophthalmic  Vis Res 2016;11:70-77.
10.    Liu Y, Li Y, Wang C, Zhang Y, Su G. Morphologic and histopathologic change of sodium iodate-induced retinal degeneration in adult rats. Int  J Clin Exp Pathol 2019;12:443-454.
11.    Chan C-M, Huang D-Y, Sekar P, Hsu S-H, Lin W-W. Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci 2019;26:40-50.
12.    Chowers G, Cohen M, Marks-Ohana D, Stika S, Eijzenberg A, Banin E, et al. Course of sodium iodate–induced retinal degeneration in albino and pigmented mice. Invest Ophthalmol  Vis Sci 2017;58:2239-2249.
13.    Bermond K, Berlin A, Tarau I-S, Wobbe C, Heintzmann R, Curcio CA, et al. Characteristics of normal human retinal pigment epithelium cells with extremes of autofluorescence or intracellular granule count. Ann Eye Sci 2021;6:1-12.
14.    Lyu Y, Tschulakow AV, Schraermeyer UA. Melanosomes degrade lipofuscin and precursors that are derived from photoreceptor membrane turnover in the retinal pigment epithelium—an explanation for the origin of the melanolipofuscin granule. bioRxiv 2022; 1-48.
15.    Sparrow JR, Duncker T. Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration. J  Clin Med 2014;3:1302-1321.
16.    Feeney-Burns L, Hilderbrand E, Eldridge S. Aging human RPE: Morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 1984;25:195-200.
17. Hogan MJ, Alvarado JA, Weddell JE. Histology of the Human Eye. An Atlas and Textbook, WB Saunders; 1971.
18.    van der Schaft TL, Mooy CM, de Bruijn WC, De Jong P. Early stages of age-related macular degeneration: An immunofluorescence and electron microscopy study. Br J Ophthalmol 1993;77:657-661.
19.    Sarks S. Ageing and degeneration in the macular region: Aclinico-pathological study. Br J Ophthalmol 1976;60:324-341.
20.    Escrevente C, Falcão AS, Hall MJ, Lopes-da-Silva M, Antas P, Mesquita MM, et al. Formation of lipofuscin-like autofluorescent granules in the retinal pigment epithelium requires lysosome dysfunction. Invest Ophthalmol Vis Sci 2021;62:39-51.
21.    Jung H, Liu J, Liu T, George A, Smelkinson MG, Cohen S, et al. Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. JCI Insight. 2019;4:e124904.
22.    Abotaleb Kadkhodaeian H, Tiraihi T, Ahmadieh H, Ziaiiardakani H, Daftarian N, Taheri T. Survival and migration of bone marrow derived neurosphere after transplantation into subretinal space in albino rat AMD model. Sci J Kurdistan Univ Med Sci 2016;21:11-25.
23.    Kadkhodaeian HA, Tiraihi T, Ahmadieh H, Ardakani HZ, Daftarian N, Taheri T. Survival and migration of adipose-derived stem cells transplanted in the injured retina. Exp Clin Transplant 2018;16:204-211.
24.    Bermond K, Wobbe C, Tarau I-S, Heintzmann R, Hillenkamp J, Curcio CA, et al. Autofluorescent granules of the human retinal pigment epithelium: phenotypes, intracellular distribution, and age-related topography. Invest Ophthalmol Vis Sci 2020;61:35-46.
25.    Keşkek NŞ, Şermet F. The use of fundus autofluorescence in dry age-related macular degeneration. Turk J Ophthalmol 2021;51:169-176.
26.    Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85:845-881.
27.    Pollreisz A, Messinger JD, Sloan KR, Mittermueller TJ, Weinhandl AS, Benson EK, et al. Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy. Exp Eye Res 2018;166:131-139.
28.    Greenberg JP, Duncker T, Woods RL, Smith RT, Sparrow JR, Delori FC. Quantitative fundus autofluorescence in healthy eyes. Invest Ophthalmol Visual Sci 2013;54:5684-5693.
29.    Sakai D, Takagi S, Totani K, Yamamoto M, Matsuzaki M, Yamanari M, et al. Retinal pigment epithelium melanin imaging using polarization-sensitive optical coherence tomography for patients with retinitis pigmentosa. Sci Rep 2022;12:1-9.
30.    Yamanari M, Mase M, Obata R, Matsuzaki M, Minami T, Takagi S, et al. Melanin concentration and depolarization metrics measurement by polarization-sensitive optical coherence tomography. Sci Rep 2020;10:1-14.
31.    Chen M, Rajapakse D, Fraczek M, Luo C, Forrester JV, Xu H. Retinal pigment epithelial cell multinucleation in the aging eye–a mechanism to repair damage and maintain homoeostasis. Agin Cell 2016;15:436-445.