1. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473:298-307.
2. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93.
3. Kerr AL, Steuer EL, Pochtarev V, Swain RA. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 2010; 171:214-226.
4. Adair TH, Montani JP. Integrated systems physiology: From molecule to function to disease. Angiogenesis. San rafael (CA): Morgan & Claypool Life Sciences Copyright © 2010 by Morgan & Claypool Life Sciences.; 2010.
5. Klagsbrun M, Moses MA. Molecular angiogenesis. Chem Biol 1999; 6:R217-R224.
6. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018; 59:455-467.
7. Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 2006; 98:1014-1023.
8. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells 2019; 8:471-489.
9. Barr JL, Unterwald EM. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim Biophys Acta Mol Cell Res 2020; 1867:118746-118770.
10. Wadhwa P, Jain P, Jadhav HR. Glycogen synthase kinase 3 (GSK3): Its role and inhibitors. Curr Top Med Chem 2020; 20:1522-1534.
11. Leroy K, Brion JP. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 1999; 16:279-293.
12. Kim HS, Skurk C, Thomas SR, Bialik A, Suhara T, Kureishi Y, et al. Regulation of angiogenesis by glycogen synthase kinase-3beta. J Biol Chem 2002; 277:41888-41896.
13.Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, et al. Glycogen synthase kinase-3: A new therapeutic target in renal cell carcinoma. Br J Cancer 2009; 101:2005-2014.
14. Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, et al. The wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 2010; 18:938-949.
15. Lutz B. Neurobiology of cannabinoid receptor signaling
dialogues. Clin Neurosci 2020; 22:207-222.
16. Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Crit Rev Toxicol 2020; 50:359-382.
17. Seither JZ, Reidy LJ, Boland DM. Identification and quantification of 5-fluoro ADB and the 5-fluoro ADB ester hydrolysis metabolite in postmortem blood samples by LC-MS/MS. J Anal Toxicol 2020; 44:133-139.
18. Le Boisselier R, Alexandre J, Lelong-Boulouard V, Debruyne D. Focus on cannabinoids and synthetic cannabinoids. Clin Pharmacol Ther 2017; 101:220-229.
19. McCain KR, Jones JO, Chilbert KT, Patton AL, James LP, Moran JH. Impaired driving associated with the synthetic cannabinoid 5f-Adb. J Forensic Sci Criminol 2018; 6:1-7.
20. Usui K, Fujita Y, Kamijo Y, Kokaji T, Funayama M. Identification of 5-fluoro ADB in human whole blood in four death cases. J Anal Toxicol 2018; 42:e21-e25.
21. Al-Eitan L, Alhusban A, Alahmad S. Effects of the synthetic cannabinoid XLR-11 on the viability and migration rates of human brain microvascular endothelial cells in a clinically-relevant model. Pharmacol Rep 2020; 72:1717-1724.
22. Rezabakhsh A, Nabat E, Yousefi M, Montazersaheb S, Cheraghi O, Mehdizadeh A, et al. Endothelial cells’ biophysical, biochemical, and chromosomal aberrancies in high-glucose condition within the diabetic range. Cell Biochem Funct 2017; 35:83-97.
23. Xiang Y, Yao X, Wang X, Zhao H, Zou H, Wang L, et al. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: In vivo and in vitro. Biosci Rep 2019; 39:1-12.
24. Al-Eitan L, Alahmad S. The expression analyses of GSK3B, VEGF, ANG1, and ANG2 in human brain microvascular endothelial cells treated with the synthetic cannabinoid XLR-11. Gene 2023; 878:147585.
25. Busquets-Garcia A, Bains J, Marsicano G. CB(1) receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 2018; 43:4-20.
26. Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res (Camb) 2020; 9:734-740.
27. Cerretani D, Collodel G, Brizzi A, Fiaschi AI, Menchiari A, Moretti E, et al. Cytotoxic effects of cannabinoids on human HT-29 colorectal adenocarcinoma cells: Different mechanisms of THC, CBD, and CB83. Int J Mol Sci 2020; 21: 5533-5547.
28. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp 2014; 88: 51046-51053.
29. Pisanti S, Picardi P, Prota L, Proto MC, Laezza C, McGuire PG, et al. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood 2011; 117:5541-5550.
30. Lingegowda H, Miller JE, Marks RM, Symons LK, Alward T, Lomax AE, et al. Synthetic cannabinoid agonist WIN 55212-2 targets proliferation, angiogenesis, and apoptosis via MAPK/AKT signaling in human endometriotic cell lines and a murine model of endometriosis. Front Reprod Health 2021; 3:726936-726949.
31. Benedicto A, Arteta B, Duranti A, Alonso-Alconada D. The synthetic cannabinoid URB447 Exerts antitumor and antimetastatic effect in melanoma and colon cancer. Pharmaceuticals (Basel) 2022; 15:1166-1176.
32. Moritz F, Schniering J, Distler JHW, Gay RE, Gay S, Distler O, et al. Tie2 as a novel key factor of microangiopathy in systemic sclerosis. Arthritis Res Ther 2017; 19:105-115.
33. Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull 2011; 34:1785-1788.
34. Blázquez C, Casanova ML, Planas A, Gómez Del Pulgar T, Villanueva C, Fernández-Aceñero MJ, et al. Inhibition of tumor angiogenesis by cannabinoids. Faseb j 2003; 17:529-531.
35. Hartigan JA, Johnson GV. Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J Biol Chem 1999; 274:21395-21401.
36. Luo J. The role of GSK3beta in the development of the central nervous system. Front Biol (Beijing) 2012; 7:212-220.
37. Krishnankutty A, Kimura T, Saito T, Aoyagi K, Asada A, Takahashi SI, et al. In vivo regulation of glycogen synthase kinase 3β activity in neurons and brains. Sci Rep 2017; 7:8602-8616.
38.Zhao P, Li Q, Shi Z, Li C, Wang L, Liu X, et al. GSK-3β regulates tumor growth and angiogenesis in human glioma cells. Oncotarget 2015; 6:31901-31915.
39. Holmes T, O’Brien TA, Knight R, Lindeman R, Symonds G, Dolnikov A. The role of glycogen synthase kinase-3beta in normal haematopoiesis, angiogenesis and leukaemia. Curr Med Chem 2008; 15:1493-1499.
40. Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, Ciani E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem 2010; 285:10098-10109.