Effects of alamandine on monocrotaline-induced pulmonary hypertension in rats

Document Type : Original Article


Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran


Objective(s): Pulmonary arterial hypertension (PAH) is a severe and often fatal disease that is associated with oxidative stress and inflammation. Alamandine, a component of the renin-angiotensin system, known for its antioxidative, anti-inflammatory, and antifibrotic effects, has been investigated in this study to determine if it has protective effects against PAH induced by monocrotaline (MCT) and if these effects are associated with oxidative stress, inflammatory factors, and inducible nitric oxide synthase (iNOS).
Materials and Methods: Rats were administered MCT (40 mg/kg) on day 0 and then received alamandine (50 mg/kg/day) via mini-osmotic pumps for 21 days starting one day later. Hemodynamic parameters, electrocardiograms, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), inflammatory cytokines (TNF-α, IL-1β, and NF-κB), iNOS, and MrgD receptor expression in lung tissue were evaluated at the end of the 21-day period. The MrgD receptor was quantified through immunofluorescent staining, and the histopathology of lung tissues was evaluated using hematoxylin and eosin staining. 
Results: The results showed that alamandine treatment significantly improved hemodynamic parameters, oxidative stress markers, inflammatory factors, and electrocardiographic data. Furthermore, treatment with alamandine decreased the levels of iNOS. Additionally, alamandine treatment decreased the expression levels of MrgD receptors in the lung tissue of MCT-induced PAH. 
Conclusion: In summary, this study indicates that alamandine has protective effects against monocrotaline-induced PAH, and these effects may be attributed to the inhibition of oxidative stress, inflammatory parameters, and iNOS.


Main Subjects

1. Maron BA. Revised definition of pulmonary hypertension and approach to management: A  clinical primer. J Am Heart Assoc 2023; 12: e029024. 
2. Rajagopal S, Ruetzler K, Ghadimi K, Horn EM, Kelava M, Kudelko KT, et al. Evaluation and management of pulmonary hypertension in noncardiac surgery: A  scientific statement from the American Heart Association. Circulation 2023; 47: 1317–1343. 
3. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, and McGoon MD. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the reveal registry. Chest 2012; 142: 448–456. 
4. Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, et al. Vascular remodeling in pulmonary arterial hypertension: The potential involvement  of innate and adaptive immunity. Front Med 2021; 8: 806899. 
5. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 2009; 297: 1013-32.
6. Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, et al. Targeting oxidative stress as a preventive and therapeutic approach for  cardiovascular disease. J Transl Med 2023; 21: 519. 
7. Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, and Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary  hypertension. Pharmacol Ther 2023; 244: 108389. 
8. Guignabert C, Tu L, Girerd B, Ricard N, Huertas A, Montani D, et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: Importance of endothelial communication. Chest 2015; 147: 529–537. 
9. Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165: 1419–1425. 
10. Kommireddy S, Bhyravavajhala S, Kurimeti K, Chennareddy S, Kanchinadham S, Vara Prasad IR, et al. Pulmonary arterial hypertension in systemic lupus erythematosus may benefit by addition of immunosuppression to vasodilator therapy: An observational study. Rheumatology (Oxford) 2015; 54: 1673–1679. 
11. Campos M and Schiopu E. Pulmonary arterial hypertension in adult-onset Still’s disease: Rapid response to anakinra. Case Rep Rheumatol 2012; 2012: 1–5. 
12. Sakuma M, Toyoda S, Inoue T, and Node K. Inflammation in pulmonary artery hypertension. Vascul Pharmacol 2019; 118–119: 106562. 
13. Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, and Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Anim Model Exp Med 2022; 5: 207–216. 
14. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, et al. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 2013; 123: 5203–5211. 
15. Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des 2003; 9: 715–722. 
16. Soltani Hekmat A, Javanmardi K, Kouhpayeh A, Baharamali E, Farjam. Differences in cardiovascular responses to alamandine in two-kidney, one clip hypertensive and normotensive rats. Circ J 2017; 81: 405–412. 
17. Soltani Hekmat A and Javanmardi K. Alamandine: Potential protective effects in SARS-CoV-2 patients. J Renin Angiotensin Aldosterone Syst 2021; 202: 6824259. 
18. Soltani Hekmat A, Navabi Z, Alipanah H, and Javanmardi K. Alamandine significantly reduces doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2021; 10: 1781-1795. 
19. Park BM, Phuong HTA, Yu L, and Kim SH. Alamandine protects the heart against reperfusion injury via the MrgD receptor. Circ J 2018; 82: 2584–2593. 
20. De Souza-Neto FP, De Morais E Silva M, De Carvalho Santuchi M, De Alcântara-Leonídio TC, Motta-Santos D, Oliveira AC, et al. Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clin Sci 2019; 133: 629-643. 
21. Li P, Chen X-RR, Xu F, Liu C, Li C, Liu H, et al. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci 2018; 206: 106–116. 
22. Henkens IR, Mouchaers KTB, Vliegen HW, Van Der Laarse WJ, Swenne CA, Maan AC, et al. Early changes in rat hearts with developing pulmonary arterial hypertension can be detected with three-dimensional electrocardiography. Am J Physiol Heart Circ Physiol 2007; 293: 1300-1307. 
23. Soltani Hekmat A, Chenari A, Alipanah H, and Javanmardi K. Protective effect of alamandine on doxorubicin‑induced nephrotoxicity in rats. BMC Pharmacol Toxicol 2021; 22: 31. 
24. Liu Q, Zheng B, Zhang Y, Huang W, Hong Q, and Meng Y. Alamandine via MrgD receptor attenuates pulmonary fibrosis via NOX4 and autophagy pathway. Can J Physiol Pharmacol 2021; 99: 885–93. 
25. Soltani Hekmat A, Zare N, Moravej A, Meshkibaf MH, Javanmardi K. Effect of prolonged infusion of alamandine on cardiovascular parameters and cardiac ACE2 expression in a rat model of renovascular hypertension. Biol Pharm Bull 2019; 42: 960–967. 
26. Lan W, Chi L, Xiru C, and Peng L. Alamandine attenuates long-term hypertension-induced cardiac fibrosis independent of blood pressure. Mol Med Rep 2019; 19: 4553-4560. 
27. Sutendra G and Michelakis ED. Pulmonary arterial hypertension: challenges in translational research and a vision for change. Sci Transl Med 2013; 5: 208sr5. 
28. Dianat M, Radan M, Badavi M, Mard SA, Bayati V, and Ahmadizadeh M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: The role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 2018; 19: 58. 
29. Musa AE, Shabeeb D, and Alhilfi HSQ. Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: Biochemical evaluation. Medicina (Kaunas) 2019; 55: 308. 
30. Hasan HF, Abdel-Hamid GR, and Ebrahim SI. Antioxidant and anti-inflammatory effects of diallyl disulfide on hepatotoxicity induced by cyclophosphamide in rats. Nat Prod Commun 2020; 15: 1-10. 
31. Wilcox SR, Kabrhel C, and Channick RN. Pulmonary hypertension and right ventricular failure in emergency medicine. Ann Emerg Med 2015; 66: 619–628. 
32. Cajigas HR and Awdish R. Classification and diagnosis of pulmonary hypertension. Heart Fail Rev 2016; 21: 229–237. 
33. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, et al. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertens 2009; 54: 668–675. 
34. Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, et al. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res 2013; 99: 395–403. 
35. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine. Circ Res 2013; 112: 1104–1111. 
36. Koo HS, Kim KC, and Hong YM. Gene expressions of nitric oxide synthase and matrix metalloproteinase-2 in monocrotaline-induced pulmonary hypertension in rats after bosentan treatment. Korean Circ J 2011; 41: 83–90. 
37. Leineweber K, Seyfarth T, Abraham G, Gerbershagen HP, Heinroth-Hoffmann I, Pönicke K, et al. Cardiac beta-adrenoceptor changes in monocrotaline-treated rats: differences between membrane preparations from whole ventricles and isolated ventricular cardiomyocytes. J Cardiovasc Pharmacol 2003; 41: 333–342. 
38. Akhavein F, Jean St-Michel E, Seifert E, and Rohlicek C V. Decreased left ventricular function, myocarditis, and coronary arteriolar medial thickening following monocrotaline administration in adult rats. J Appl Physiol 2007; 103: 287–295. 
39. Sharma RK, Oliveira AC, Kim S, Rigatto K, Zubcevic J, Rathinasabapathy A, et al. Involvement of neuroinflammation in the pathogenesis of monocrotaline-induced pulmonary hypertension. Hypertension 2018; 71: 1156–1163. 
40. Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 2018; 51: 1702638. 
41. Cohen-Kaminsky S, Hautefort A, Price L, Humbert M, and Perros F. Inflammation in pulmonary hypertension: what we know and what we could logically and safely target first. Drug Discov Today 2014; 19: 1251–1256. 
42. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, MacHado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010; 122: 920–927. 
43. Kurakula K, Smolders VFED, Tura-Ceide O, Wouter Jukema J, Quax PHA, and Goumans MJ. Endothelial dysfunction in pulmonary hypertension: Cause or consequence? Biomedicines 2021; 9: 1–23. 
44. Tang C, Luo Y, Li S, Huang B, Xu S, and Li L. Characteristics of inflammation process in monocrotaline-induced pulmonary  arterial hypertension in rats. Biomed Pharmacother 2021; 133: 111081. 
45. Long M, Yang SH, Han JX, Li P, Zhang Y, Dong S, et al. The protective effect of grape-seed proanthocyanidin extract on oxidative damage induced by zearalenone in kunming mice liver. Int J Mol Sci 2016; 17: 808. 
46. Wang X, Yang Y, Yang D, Tong G, Lv S, Lin X, et al. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J Vasc Surg 2016; 64: 1468–1477. 
47. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, et al. Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 2001; 164: 1038–1042. 
48. Irodova NL, Lankin VZ, Konovalova GK, Kochetov AG, and Chazova IE. Oxidative stress in patients with primary pulmonary hypertension. Bull Exp Biol Med 2002; 133: 580–582. 
49. DeMarco VG, Habibi J, Whaley-Connell AT, Schneider RI, Heller RL, Bosanquet JP, et al. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 2008; 294: H2659-68. 
50. Tacar O, Sriamornsak P, and Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013: 65; 157–170. 
51. Dobashi K, Ghosh B, Orak JK, Singh I, and Singh AK. Kidney ischemia-reperfusion: Modulation of antioxidant defenses. Mol Cell Biochem 2000; 205: 1-11. 
52. Gong J, Luo M, Yong Y, Zhong S, and Li P. Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats. Cell Death Discov 2022; 8: 1–9. 
53. Jesus ICG, Mesquita T, Souza Santos RA, and Guatimosim S. An overview of alamadine/MrgD signaling and its role in cardiomyocytes. Am J Physiol Cell Physiol 2023; 324: 606–613. 
54. Liu C, Yang C-X, Chen X-R, Liu B-X, Li Y, Wang X-Z, et al. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids 2018; 50: 1071–1081. 
55. Jesus ICG, Mesquita TRR, Monteiro ALL, Parreira AB, Santos AK, Coelho ELX, et al. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a  nitric oxide-dependent activation of CaMKII. Am J Physiol Cell Physiol 2020; 318: 740–750.