An overview of pharmacological effects of Crocus sativus and its constituents

Document Type : Review Article


1 Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

2 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

4 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran

5 Lung Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran


Crocus sativus L. was used for the treatment of a wide range of disorders in traditional medicine. Due to the extensive protective and treatment properties of C. sativus and its constituents in various diseases, the purpose of this review is to collect a summary of its effects, on experimental studies, both in vitro and in vivo. Databases such as PubMed, Science Direct, and Scopus were explored until January 2023 by employing suitable keywords. Several investigations have indicated that the therapeutic properties of C. sativus may be due to its anti-oxidant and anti-inflammatory effects on the nervous, cardiovascular, immune, and respiratory systems. Further research has shown that its petals also have anticonvulsant properties. Pharmacological studies have shown that crocetin and safranal have anti-oxidant properties and through inhibiting the release of free radicals lead to the prevention of disorders such as tumor cell proliferation, atherosclerosis, hepatotoxicity, bladder toxicity, and ethanol induced hippocampal disorders. Numerous studies have been performed on the effect of C. sativus and its constituents in laboratory animal models under in vitro and in vivo conditions on various disorders. This is necessary but not enough and more clinical trials are needed to investigate unknown aspects of the therapeutic properties of C. sativus and its main constituents in different disorders.


Main Subjects

1. Bahmani M, Rafieian M, Baradaran A, Rafieian S, Rafieian-kopaei M. Nephrotoxicity and hepatotoxicity evaluation of Crocus sativus stigmas in neonates of nursing mice. J Nephropathol 2014; 3:81-85.
2. Saeidnia S. future position of Crocus sativus as a valuable medicinal herb in phytotherapy. Pharmacogn J 2012; 27:71-71.
3. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomedicine 2015; 5:376-391.
4. Boskabady MH, Farkhondeh T. Antiinflammatory, antioxidant, and immunomodulatory effects of Crocus sativus L. and its main constituents. Phytother Res 2016; 30:1072-1094.
5. Khorasany AR, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci 2016; 19:455-469.
6. Bukhari SI, Manzoor M, Dhar M. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745.
7.Shufeng L, Jingbin L, Wang G, Hua L. Portable Saffron Harvesting Machine. CN102860176B; 2016.
8.González Tornero D, Medina Cebrián J. Machine to Collect Saffron Flowers. ES2512165B1; 2015.
9.Aghili M. Makhzan-al-Advia. 1st ed. Tehran University of Medical Sciences; 2009.
10. Hosseinzadeh H, Younesi H. Petal and stigma extracts of Crocus sativus L. have antinociceptive and anti-inflammatory effects in mice. BMC Pharmacol 2002; 2:1-8.
11. Mousavi SZ, Bathaie SZ. Historical uses of saffron: Identifying potential new avenues for modern research. Avicenna J Phytomedicine 2011; 1:57-66.
12.Siraisi NG. Avicenna in Renaissance Italy: the Canon and medical teaching in Italian universities after 1500. Princeton University Press; 2014.
13. Lohiya N, Balasubramanian K, Ansari A. Indian folklore medicine in managing men’s health and wellness. Andrologia 2016; 48:894-907.
14. Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr 2007; 157:315-319.
15. Abrishami M. Persian saffron, a comprehensive cultural and agricultural history. 1st ed. Mashhad, Astan Ghods Razavi Publication; 1997.
16. Hosseinzadeh H, Nassiri‐Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res 2013; 27:475-483.
17. Ld B, RJvd S. An Introduction to the Ancient World. 1st ed. Tehran, Ghoghnus; 2005.
18. Mollazadeh H, Emami SA, Hosseinzadeh H. Razi’s Al-Hawi and saffron (Crocus sativus): a review. Iran J Basic Med Sci 2015; 18:1153-1166.
19. Javadi B, Sahebkar A, Emami SA. A survey on saffron in major Islamic traditional medicine books. Iran J Basic Med Sci 2013; 16:1-11.
20. Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 2007; 100:1126-1131.
21. Lage M, Cantrell CL. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic 2009; 121:366-373.
22. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2:1-8.
23. Goli SAH, Mokhtari F, Rahimmalek M. Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. J Agric Sci 2012; 4:175-181.
24. Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 2008; 46:3443-3447.
25. Parizadeh MR, Ghafoori GF, Abbaspour AR, Tavakol AJ, Ghayour MM. Effects of aqueous saffron extract on nitric oxide production by two human carcinoma cell lines: Hepatocellular carcinoma (HepG2) and laryngeal carcinoma (Hep2). Avicenna J Phytomedicine 2011; 1:43-50.
26. Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, et al. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev 2010; 11:675-679.
27. Feizzadeh B, Afshari JT, Rakhshandeh H, Rahimi A, Brook A, Doosti H. Cytotoxic effect of saffron stigma aqueous extract on human transitional cell carcinoma and mouse fibroblast. Urol J 2008; 5:161-167.
28. Mousavi M, Baharara J, Asadi-Samani M. Anti-angiogenesis effect of Crocous sativus L. extract on matrix metalloproteinase gene activities in human breast carcinoma cells. J HerbMed Pharmacol 2014; 3:101-105.
29. Liu D-D, Ye Y-L, Zhang J, Xu J-N, Qian X-D, Zhang Q. Distinct pro-apoptotic properties of Zhejiang saffron against human lung cancer via a caspase-8-9-3 cascade. Asian Pac J Cancer Prev 2014; 15:6075-6080.
30. Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int 2014; 2014:135048.
31. Amin A, Hamza AA, Bajbouj K, Ashraf SS, Daoud S. Saffron: a potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 2011; 54:857-867.
32. Das I, Das S, Saha T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. Acta Histochem 2010; 112:317-327.
33. Das I, Chakrabarty R, Das S. Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev 2004; 5:70-76.
34. El Daly ES. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. J Pharm Belg 1998; 53:87-93.
35. Premkumar K, Abraham SK, Santhiya ST, Ramesh A. Inhibitory effects of aqueous crude extract of Saffron (Crocus sativus L.) on chemical-induced genotoxicity in mice. Asia Pac J Clin Nutr 2003; 12:474-476.
36. Ordoudi SA, Befani CD, Nenadis N, Koliakos GG, Tsimidou MZ. Further examination of antiradical properties of Crocus sativus stigmas extract rich in crocins. J Agric Food Chem 2009; 57:3080-3086.
37. Aung H, Wang C, Ni M, Fishbein A, Mehendale S, Xie J, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 2007; 29:175-180.
38. Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, et al. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther 2009; 8:315-323.
39. Bakshi HA, Hakkim FL, Sam S, Javid F, Rashan L. Dietary crocin reverses melanoma metastasis. J Biomed Res 2018; 32:39-50.
40. Garc-Olmo DC, Riese HH, Escribano J, Onta˜´ n J, Fernandez JA, Atiénzar M, et al. Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutr Cancer 1999; 35:120-126.
41. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med 2013; 79:447-451.
42. Ashrafi M, Bathaie SZ, Abroun S, Azizian M. Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA Cell Biol 2015; 34:684-691.
43. Sajjadi M, Bathaie Z. Comparative study on the preventive effect of saffron carotenoids, crocin and crocetin, in NMU-induced breast cancer in rats. Cell J 2017; 19:94-101.
44. Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 2007; 27:357-362.
45. Vali F, Changizi V, Safa M. Synergistic apoptotic effect of crocin and paclitaxel or crocin and radiation on MCF-7 cells, a type of breast cancer cell line. Int J Breast Cancer 2015; 2015:20-26.
46. Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN. Crocetin inhibits invasiveness of MDA‐MB‐231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med 2011; 77:146-151.
47. Magesh V, DurgaBhavani K, Senthilnathan P, Rajendran P, Sakthisekaran D. In vivo protective effect of crocetin on benzo (a) pyrene‐induced lung cancer in Swiss albino mice. Phytother Res 2009; 23:533-539.
48. Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 2006; 287:127-135.
49. Kazi HA, Qian Z. Crocetin reduces TNBS-induced experimental colitis in mice by downregulation of NFkB. Saudi J Gastroenterol 2009; 15:181-187.
50. Wang C-J, Hsu J-D, Lin J-K. Suppression of aflatoxin B1-induced hepatotoxic lesions by crocetin (a natural carotenoid). Carcinogenesis 1991; 12:1807-1810.
51. Chen B, Hou Z-H, Dong Z, Li C-D. Crocetin downregulates the proinflammatory cytokines in methylcholanthrene-induced rodent tumor model and inhibits COX-2 expression in cervical cancer cells. Biomed Res Int 2015; 2015: 829513-829513.
52. Hosseinzadeh H, Sadeghnia HR. Effect of safranal, a constituent of Crocus sativus (Saffron), on methyl methanesulfonate (MMS)–induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (Comet) assay. DNA Cell Biol 2007; 26:841-846.
53. Nader M, Chahine N, Salem C, Chahine R. Saffron (Crocus sativus) pretreatment confers cardioprotection against ischemia-reperfusion injuries in isolated rabbit heart. J Physiol Biochem 2016; 72:711-719.
54. Boskabady M, Shafei M, Shakiba A, Sefidi HS. Effect of aqueous‐ethanol extract from Crocus sativus (saffron) on guinea‐pig isolated heart. Phytother Res 2008; 22:330-334.
55. Joukar S, Ghasemipour-Afshar E, Sheibani M, Naghsh N, Bashiri A. Protective effects of saffron (Crocus sativus) against lethal ventricular arrhythmias induced by heart reperfusion in rat: a potential anti-arrhythmic agent. Pharm Biol 2013; 51:836-843.
56. Nasiri Z, Sameni HR, Vakili A, Jarrahi M, Khorasani MZ. Dietary saffron reduced the blood pressure and prevented remodeling of the aorta in L-NAME-induced hypertensive rats. Iran J Basic Med Sci 2015; 18:1143-1146.
57.Khori V, Rakhshan E, Mirabbas A, editors. A study of the role of nitric oxide in the mechanism of action of hydroalcoholic extract of saffron (Crocus sativus) on the electrophysiological properties of the rabbit atrioventricular node. II International Symposium on Saffron Biology and Technology 2006; 739:351-358.
58. Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM, Hosseinzadeh H. The effect of chronic administration of safranal on systolic blood pressure in rats. Iran J Pharm Res 2015; 14:585-590.
59. Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 2010; 24:990-994.
60. Jahanbakhsh Z, Rasoulian B, Jafari M, Shekarforoush S, Esmailidehaj M, Mohammadi M, et al. Protective effect of crocin against reperfusion-induced cardiac arrhythmias in anaesthetized rats. EXCLI J 2012; 11:20-29.
61. Dianat M, Esmaeilizadeh M, Badavi M, Samarbafzadeh A, Naghizadeh B. Protective effects of crocin on hemodynamic parameters and infarct size in comparison with vitamin E after ischemia reperfusion in isolated rat hearts. Planta Med 2014; 80:393-398.
62. Xu G, Gong Z, Yu W, Gao L, He S, Qian Z. Increased expression ratio of Bcl‐2/Bax is associated with crocin‐mediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol 2007; 100:31-35.
63. Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci 2013; 16:64-72.
64. Yang L, Dong X. Inhibition of inflammatory response by crocin attenuates hemorrhagic shock-induced organ damages in rats. J Interferon Cytokine Res 2017; 37:295-302.
65. Diao S-L, Sun J-W, Ma B-X, Li X-M, Wang D. Influence of crocetin on high-cholesterol diet induced atherosclerosis in rats via anti-oxidant activity together with inhibition of inflammatory response and p38 MAPK signaling pathway. Saudi J Biol Sci 2018; 25:493-499.
66. Xiang M, Yang R, Zhang Y, Wu P, Wang L, Gao Z, et al. Effect of crocetin on vascular smooth muscle cells migration induced by advanced glycosylation end products. Microvasc Res 2017; 112:30-36.
67. Zhou C-H, Qian Z-Y, Xiang M, He S-Y. Involvement of Ca2+ in the inhibition by crocetin of angiotensin II-induced ERK1/2 activation in vascular smooth muscle cells. Eur J Pharmacol 2007; 554:85-91.
68. Xiang M, Qian Z-Y, Zhou C-H, Liu J, Li W-N. Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J Ethnopharmacol 2006; 107:25-31.
69. Zheng S, Qian Z, Wen N, Xi L. Crocetin suppresses angiotensin II-induced vascular smooth-muscle cell proliferation through inhibition of ERK1/2 activation and cell-cycle progression. J Cardiovasc Pharmacol 2007; 50:519-525.
70. Umigai N, Tanaka J, Tsuruma K, Shimazawa M, Hara H. Crocetin, a carotenoid derivative, inhibits VEGF-induced angiogenesis via suppression of p38 phosphorylation. Curr Neurovasc Res 2012; 9:102-109.
71. Wang Y, Sun J, Liu C, Fang C. Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur J Pharmacol 2014; 741:290-296.
72. Shen X-C, Qian Z-Y. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Die Pharmazie 2006; 61:348-352.
73. Shen X-C, Qian Z-Y. Effect of crocetin on cardiac hypertrophy induced by overloading pressure in rats. Yao xue xue bao= Acta pharm Sin 2004; 39:172-175.
74. Cai J, Yi FF, Bian ZY, Shen DF, Yang L, Yan L, et al. Crocetin protects against cardiac hypertrophy by blocking MEK‐ERK1/2 signalling pathway. J Cell Mol Med 2009; 13:909-925.
75. Tang F, Qian Z, Liu P, Zheng S, He S, Bao L, et al. Crocetin improves endothelium-dependent relaxation of thoracic aorta in hypercholesterolemic rabbit by increasing eNOS activity. Biochem Pharmacol 2006; 72:558-565.
76. Zhou C-H, Qian Z-Y, Zheng S-G, Xiang M. ERK1/2 pathway is involved in the inhibitory effect of crocetin on angiotensin II-induced vascular smooth muscle cell proliferation. Eur J Pharmacol 2006; 535:61-68.
77. Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long‐term potentiation. Phytother Res 2000; 14:149-152.
78. Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS. Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur J Nutr 2012; 51:719-727.
79.Hosseinzadeh H, Karimi G, Niapoor M, editors. Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. I International Symposium on Saffron Biology and Biotechnology 2003; 650: 435-445.
80. Karimi GR, Hosseinzadeh H, Khalegh PP. Study of antidepressant effect of aqueous and ethanolic extract of Crocus sativus in mice. Iran J Basic Med Sci 2001; 4:11-15.
81. Rios J, Recio M, Giner R, Manez S. An update review of saffron and its active constituents. Phytother Res 1996; 10:189-193.
82. Moshiri E, Basti AA, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S. Crocus sativus L.(petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine 2006; 13:607-611.
83. Basti AA, Moshiri E, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: a pilot double-blind randomized trial. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:439-442.
84. Hosseinzadeh H, Khosravan V. Anticonvulsant Effects of Aqueous and Ethanolic Extracts of Crocus sativus L Stigmas in Mice. Arch Iran Med 2002; 5:44-47.
85. Dalu D, Shanker K. Anticonvulsant activity of ethanolic root extract of Crocus sativus on experimental animals. Adv Pharmacol Toxicol 2017; 18:19-26.
86. Mazumder AG, Sharma P, Patial V, Singh D. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species‐mediated NF‐κB activation. Basic Clin Pharmacol Toxicol 2017; 120:426-433.
87. Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005; 76:722-724.
88. Hosseinzadeh H, Sadeghnia H. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine 2007; 14:256-262.
89. Sadeghnia H, Cortez M, Liu D, Hosseinzadeh H, Snead OC. Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J Pharm Pharm Sci 2008; 11:1-14.
90. Ghazavi A, Mosayebi G, Salehi H, Abtahi H. Effect of ethanol extract of saffron (Crocus sativus L.) on the inhibition of experimental autoimmune encephalomyelitis in C57bl/6 mice. Pak J Biol Sci 2009; 12:690-695.
91. Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. Effect of Saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food 2006; 9:246-253.
92. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, et al. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 2006; 54:8762-8768.
93. Khalili M, Roghani M, Ekhlasi M. The effect of aqueous Crocus sativus L. extract on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Iran J Pharm Res 2009; 8:185-191.
94. Batarseh YS, Bharate SS, Kumar V, Kumar A, Vishwakarma RA, Bharate SB, et al. Crocus sativus extract tightens the blood-brain barrier, reduces amyloid β load and related toxicity in 5XFAD mice. ACS Chem Neurosci 2017; 8:1756-1766.
95. Sugiura M, Saito H, Abe K, Shoyama Y. Ethanol extract of Crocus sativus L. Antagonizes the inhibitory action of ethanol on hippocampal long‐term potentiation in vivo. Phytother Res 1995; 9:100-104.
96. Amin B, Hosseinzadeh H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012; 83:888-895.
97. Amin B, Abnous K, Motamedshariaty V, Hosseinzadeh H. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An Acad Bras Cienc 2014; 86:1821-1832.
98. Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res 2007; 183:141-146.
99. Dashti-r M, Zeinali F, Anvari M, Hosseini S. Saffron (Crocus sativus L.) extract prevents and improves D-galactose and NaNO2 induced memory impairment in mice. EXCLI J 2012; 11:328-337.
100. Berger F, Hensel A, Nieber K. Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011; 180:238-247.
101. Naghibi SM, Hosseini M, Khani F, Rahimi M, Vafaee F, Rakhshandeh H, et al. Effect of aqueous extract of Crocus sativus L. on morphine-induced memory impairment. Adv Pharmacol Sci 2012; 2012: 494367-494367.
102. Haghighizad H, Pourmotabbed A, Sahraei H, Ghadami MR, Ghadami S, Kamalinejad M. Protective effect of saffron extract on morphineâ induced inhibition of spatial learning and memory in rat. Physiol Pharmacol 2008; 12:170-179.
103. Abe K, Sugiura M, Yamaguchi S, Shoyama Y, Saito H. Saffron extract prevents acetaldehyde-induced inhibition of long-term potentiation in the rat dentate gyrus in vivo. Brain Res 1999; 851:287-289.
104. Pitsikas N, Sakellaridis N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav Brain Res 2006; 173:112-115.
105.Del-Angel D, Martínez N, Cruz M, Urrutia E, Riverón-Negrete L, Abdullaev F, editors. Saffron extract ameliorates oxidative damage and mitochondrial dysfunction in the rat brain. Acta Horticulturae 2007; 739:359-366.
106. Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 2011; 219:197-204.
107. Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, et al. Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem 2012; 60:6131-6138.
108. Shati A, Elsaid F, Hafez E. Biochemical and molecular aspects of aluminium chloride-induced neurotoxicity in mice and the protective role of Crocus sativus L. extraction and honey syrup. Neuroscience 2011; 175:66-74.
109. Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN, Margarity M. Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol 2013; 52:163-170.
110. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 2011; 667:222-229.
111. Ghaffari S, Hatami H, Dehghan G. Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. Res Pharm Sci 2015; 10:222-232.
112. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 1978; 2:1457-1459.
113. Ghasemi T, Abnous K, Vahdati F, Mehri S, Razavi B, Hosseinzadeh H. Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug Res 2015; 65:337-343.
114. Haeri P, Mohammadipour A, Heidari Z, Ebrahimzadeh-Bideskan A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson’s disease model of mice. Anat Sci Int 2019; 94:119-127.
115. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 2010; 648:110-116.
116. Sugiura M, Shoyama Y, Saito H, Nishiyama N. Crocin improves the ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks. Proc Jpn Acad, Ser B, Phys Biol Sci P JPN ACAD B-PHYS 1995; 71:319-324.
117. Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, et al. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 2011; 187:4788-4799.
118. Antony JM, Van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, et al. Human endogenous retrovirus glycoprotein–mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 2004; 7:1088-1095.
119. Wang K, Zhang L, Rao W, Su N, Hui H, Wang L, et al. Neuroprotective effects of crocin against traumatic brain injury in mice: Involvement of notch signaling pathway. Neurosci Lett 2015; 591:53-58.
120. Karami M, Bathaie SZ, Tiraihi T, Habibi-Rezaei M, Arabkheradmand J, Faghihzadeh S. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). Phytomedicineicine 2013; 21:62-67.
121. Sugiura M, Shoyama Y, Saito H, Abe K. The effects of ethanol and crocin on the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Jpn J Pharmacol 1995; 67:395-397.
122. Kumar V, Bhat Z, Kumar D, Khan N, Chashoo I, Shah M. Pharmacological profile of Crocus sativus-a comprehe sive review. Pharmacol Online 2011; 3:799-811.
123. Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plant Res 2006; 3:40-50.
124. Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iran Biomed J 2010; 14:59-65.
125. Abe K, Sugiura M, Shoyama Y, Saito H. Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. Brain Res 1998; 787:132-138.
126. Tamaddonfard E, Farshid AA, Asri-Rezaee S, Javadi S, Khosravi V, Rahman B, et al. Crocin improved learning and memory impairments in streptozotocin-induced diabetic rats. Iran J Basic Med Sci 2013; 16:91-100.
127. Sugiura M, Shoyama Y, Saito H, Abe K. Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther 1994; 271:703-707.
128. Naghizadeh B, Mansouri M, Ghorbanzadeh B, Farbood Y, Sarkaki A. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. Phytomedicineicine 2013; 20:537-542.
129. Ahmadi M, Rajaei Z, Hadjzadeh M, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neurosci Lett 2017; 642:1-6.
130. Georgiadou G, Grivas V, Tarantilis PA, Pitsikas N. Crocins, the active constituents of Crocus sativus L., counteracted ketamine–induced behavioural deficits in rats. Psychopharmacol 2014; 231:717-726.
131. Yousefvand N, Doosti H, Pourmotabbed A, Nedaei SE. The therapeutic effect of crocin on ketamine-induced retrograde amnesia in rats. J Kermanshah Univ Med Sci 2016; 20:68-73.
132.Soeda S, Aritake K, Urade Y, Sato H, Shoyama Y. Neuroprotective activities of saffron and crocin.  The Benefits of Natural Products for Neurodegenerative Diseases: Springer; 2016. p. 275-292.
133. Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 2012; 32:227-235.
134. Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh H. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 2015; 18:902-908.
135. Hassani FV, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci 2014; 22:16-24.
136. Khan MB, Hoda MN, Ishrat T, Ahmad S, Khan MM, Ahmad A, et al. Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurol Sci 2012; 33:1011-1020.
137. Yoshino Y, Ishisaka M, Umigai N, Shimazawa M, Tsuruma K, Hara H. Crocetin prevents amyloid β 1-42-Induced cell death in murine hippocampal cells. Pharm Pharmacol 2014; 5:37-42.
138. Hosseinzadeh H, Sadeghnia HR, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med 2008; 74:1441-1445.
139. Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 2017; 55:206-213.
140. Zhang C, Ma J, Fan L, Zou Y, Dang X, Wang K, et al. Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue Cell 2015; 47:291-300.
141. Sadeghnia HR, Kamkar M, Assadpour E, Boroushaki MT, Ghorbani A. Protective effect of safranal, a constituent of Crocus sativus, on quinolinic acid-induced oxidative damage in rat hippocampus. Iran J Basic Med Sci 2013; 16:73-82.
142. Arasteh A, Aliyev A, Khamnei S, Delazar A, Mesgari M, Mehmannavaz Y. Crocus sativus on serum glucose, insulin and cholesterol levels in healthy male rats. J Med Plant Res 2010; 4:397-402.
143. Mohajeri D, Mousavi G, Doustar Y. Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (saffron) stigma ethanolic extract on rats with alloxan-induced diabetes. J Biol Sci 2009; 9:302-310.
144. Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int 2014; 2014:920857.
145. Mueller M, Beck V, Jungbauer A. PPARα activation by culinary herbs and spices. Planta Med 2011; 77:497-504.
146. Hemmati M, Asghari S, Zohoori E. Effects of alcoholic and aqueous extract of barberry, jujube and saffron petals on serum level of adiponectin and lipid profile in diabetic rats. Iran J Endocrinol Metab 2015; 16:329-337.
147. Ashrafi M, AFSAR Z, Erjaee H, Nazifi S. The effects of saffron (Crocus sativus) aqueous extract on TNF-α levels in liver, kidney, and lens tissues of diabetic rats. Turk J Endocrinol Metab 2018; 22:217-224.
148. Kianbakht S. A systematic review on pharmacology of saffron and its active constituents. J Med Plant Res 2008; 4:1-27.
149. Mashmoul M, Azlan A, Yusof BNM, Khaza’ai H, Mohtarrudin N, Boroushaki MT. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J Funct Foods 2014; 8:180-187.
150. Modaresi M, Messripour M, Marghmaleki MA. Effect of saffron extract on proteins biochemical parameter of serum. Asian J Chem 2010; 22:1939-1943.
151. Ali DA, Serag H, Abdeen A, Refaat R. Efficacy of saffron extract and fenugreek seeds supplementation on liver of streptozotocin induced diabetic rats. J Biosci Appl Res 2016 2:707-722.
152. Elgazar AF, Rezq AA, Bukhari HM. Anti-hyperglycemic effect of saffron extract in alloxan-induced diabetic rats. Eur J Biol Sci 2013; 5:14-22.
153. Pan TL, Wu TH, Wang PW, Leu YL, Sintupisut N, Huang CH, et al. Functional proteomics reveals the protective effects of saffron ethanolic extract on hepatic ischemia‐reperfusion injury. Proteomics 2013; 13:2297-2311.
154. Rahbani M, Mohajeri D, Rezaie A, Nazeri M. Protective effect of ethanolic extract of saffron (dried stigmas of Crocus sativus L.) on hepatic tissue injury in streptozotocin-induced diabetic rats. J Anim Vet Adv 2012; 11:1985-1994.
155. Kianbakht S, Hashem Dabaghian F. Anti-obesity and anorectic effects of saffron and its constituent crocin in obese Wistar rat. J Med Plant Res 2015; 1:25-33.
156. Shirali S, Zahra Bathaie S, Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin‐induced diabetic rats. Phytother Res 2013; 27:1042-1047.
157. Lari P, Rashedinia M, Abnous K, Hosseinzadeh H. Crocin improves lipid dysregulation in subacute diazinon exposure through ERK1/2 pathway in rat liver. Drug Res 2014; 64:301-305.
158. Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Ind Health 2015; 31:367-376.
159. Rajaei Z, Hadjzadeh M-A-R, Nemati H, Hosseini M, Ahmadi M, Shafiee S. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 2013; 16:206-210.
160. Jnaneshwari S, Hemshekhar M, Santhosh MS, Sunitha K, Thushara R, Thirunavukkarasu C, et al. C rocin, a dietary colorant mitigates cyclophosphamide‐induced organ toxicity by modulating antioxidant status and inflammatory cytokines. J Pharm Pharmacol 2013; 65:604-614.
161. Chen Y, Yang T, Huang J, Tian X, Zhao C, Cai L, et al. Comparative evaluation of the antioxidant capacity of crocetin and crocin in vivo. Chin Pharmacol Bull 2010; 26:248-251.
162. Xi L, Qian Z, Xu G, Zheng S, Sun S, Wen N, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem 2007; 18:64-72.
163. Yang R, Tan X, Thomas AM, Shen J, Qureshi N, Morrison DC, et al. Crocetin Inhibits mRNA Expression for Tumor Necrosis Factor‐α, Interleukin‐1β, and Inducible Nitric Oxide Synthase in Hemorrhagic Shock. JPEN J Parenter Enteral Nutr 2006; 30:297-301.
164. Xi L, Qian Z, Shen X, Wen N, Zhang Y. Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Med 2005; 71:917-922.
165. Sheng L, Qian Z, Shi Y, Yang L, Xi L, Zhao B, et al. Crocetin improves the insulin resistance induced by high‐fat diet in rats. Br J Pharmacol 2008; 154:1016-1024.
166. Farahmand SK, Samini F, Samini M, Samarghandian S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 2013; 14:63-71.
167. Hazman Ö, Ovalı S. Investigation of the anti-inflammatory effects of safranal on high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Inflammation 2015; 38:1012-1019.
168. Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1 B inhibitor, activates insulin signaling in C 2 C 12 myotubes and improves glucose tolerance in diabetic KK‐Ay mice. Mol Nutr Food Res 2014; 58:1177-1189.
169. Liu M, Amini A, Ahmad Z. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Int J Biol Macromol 2017; 95:145-152.
170. Liu Z, Chen Y, Zhang H, Jin LH. Crocus sativus L. protects against SDSinduced intestinal damage and extends lifespan in Drosophila melanogaster. Mol Med Rep 2016; 14:5601-5606.
171. Fatehi M, Rashidabady T, Fatehi-Hassanabad Z. Effects of Crocus sativus petals’ extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J Ethnopharmacol 2003; 84:199-203.
172. Kianbakht S, Mozafari K. Effects of saffron and its active constituents, crocin and safranal, on prevention of indomethacin induced gastric ulcers in diabetic and nondiabetic rats. J Med Plant Res 2009; 8:30-38.
173. Mard SA, Pipelzadeh MH, Teimoori A, Neisi N, Mojahedin S, Khani MZS, et al. Protective activity of crocin against indomethacin-induced gastric lesions in rats. J Nat Med 2016; 70:62-74.
174. Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 2013; 91:397-403.
175. Zhou C, Bai W, Chen Q, Xu Z, Zhu X, Wen A, et al. Protective effect of crocetin against burn-induced intestinal injury. J Surg Res 2015; 198:99-107.
176. Tamaddonfard E, Erfanparast A, Farshid AA, Imani M, Mirzakhani N, Salighedar R, et al. Safranal, a constituent of saffron, exerts gastro-protective effects against indomethacin-induced gastric ulcer. Life Sci 2019; 224:88-94.
177. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015; 22:526-539.
178. De Monte C, Bizzarri B, Gidaro MC, Carradori S, Mollica A, Luisi G, et al. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents. J Enzyme Inhib Med Chem 2015; 30:1027-1033.
179. Inoue E, Shimizu Y, Shoji M, Tsuchida H, Sano Y, Ito C. Pharmacological properties of N-095, a drug containing red ginseng, polygala root, saffron, antelope horn and aloe wood. Am J Chinese Med 2005; 33:49-60.
180. Byrami G, Boskabady MH, Jalali S, Farkhondeh T. The effect of the extract of Crocus sativus on tracheal responsiveness and plasma levels of IL-4, IFN-γ, total NO and nitrite in ovalbumin sensitized Guinea-pigs. J Ethnopharmacol 2013; 147:530-535.
181. Mahmoudabady M, Neamati A, Vosooghi S, Aghababa H. Hydroalcoholic extract of Crocus sativus effects on bronchial inflammatory cells in ovalbumin sensitized rats. Avicenna J Phytomedicine 2013; 3:356-363.
182. Bayrami G, Boskabady M. The potential effect of the extract of Crocus sativus and safranal on the total and differential white blood cells of ovalbumin-sensitized guinea pigs. Res Pharm Sci 2012; 7:249-255.
183. Gholamnezhad Z, Koushyar H, Byrami G, Boskabady MH. The extract of Crocus sativus and its constituent safranal, affect serum levels of endothelin and total protein in sensitized guinea pigs. Iran J Basic Med Sci 2013; 16:1022-1026.
184. Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia 2006; 77:446-448.
185. Nemati H, Boskabady M, Vostakolaei HA. Stimulatory effect of Crocus sativus (saffron) on β2-adrenoceptors of guinea pig tracheal chains. Phytomedicineicine 2008; 15:1038-1045.
186. Boskabady Ma, Aslani M. Relaxant effect of Crocus sativus (saffron) on guinea‐pig tracheal chains and its possible mechanisms. J Pharm Pharmacol 2006; 58:1385-1390.
187. Boskabady M, Rahbardar MG, Nemati H, Esmaeilzadeh M. Inhibitory effect of Crocus sativus (saffron) on histamine (H1) receptors of guinea pig tracheal chains. Die Pharmazie 2010; 65:300-305.
188. Mokhtari-Zaer A, Khazdair MR, Boskabady MH. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna J Phytomedicine 2015; 5:365-375.
189. Saadat S, Yasavoli M, Gholamnezhad Z, Aslani MR, Boskabady MH. The relaxant effect of crocin on rat tracheal smooth muscle and its possible mechanisms. Iran J Pharm Res 2019; 18:1358-1370.
190. Xiong Y, Wang J, Yu H, Zhang X, Miao C. Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol 2015; 37:236-243.
191. Yosri H, Elkashef WF, Said E, Gameil NM. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017; 50:305-312.
192. Dianat M, Radan M, Badavi M, Mard SA, Bayati V, Ahmadizadeh M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 2018; 19:58-77.
193. Wang J, Kuai J, Luo Z, Wang W, Wang L, Ke C, et al. Crocin attenuates lipopolysacchride-induced acute lung injury in mice. Int J Clin Exp Pathol 2015; 8:4844-4850.
194. Yang R, Yang L, Shen X, Cheng W, Zhao B, Ali KH, et al. Suppression of NF-κB pathway by crocetin contributes to attenuation of lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2012; 674:391-396.
195. Ding J, Su J, Zhang L, Ma J. Crocetin activates Foxp3 through TIPE2 in asthma-associated Treg cells. Cell Physiol Biochem 2015; 37:2425-2433.
196. Wagner PD, Hsia CC, Goel R, Fay JM, Wagner HE, Johnson Jr RL. Effects of crocetin on pulmonary gas exchange in foxhounds during hypoxic exercise. J Appl Physiol 2000; 89:235-241.
197. Song Y, Zhu L, Li M. Antifibrotic effects of crocetin in scleroderma fibroblasts and in bleomycin-induced sclerotic mice. Clinics 2013; 68:1350-1357.
198. Boskabady MH, Rahbardar MG, Jafari Z. The effect of safranal on histamine (H1) receptors of guinea pig tracheal chains. Fitoterapia 2011; 82:162-167.
199. Neamati N, Boskabady MH. Effect of Crocus sativus (saffron) on muscarinic receptors of guinea pig tracheal chains. Func Plant Sci Biotec 2010; 4:128-131.
200. Boskabady MH, Byrami G, Feizpour A. The effect of safranal, a constituent of Crocus sativus (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs. Pharmacol Rep 2014; 66:56-61.
201. Samarghandian S, Afshari R, Sadati A. Evaluation of lung and bronchoalveolar lavage fluid oxidative stress indices for assessing the preventing effects of safranal on respiratory distress in diabetic rats. Sci World J 2014; 2014:251378-251378.
202. Feyzi R, Boskabady MH, Seyed Hosseini Tamijani SM, Rafatpanah H, Rezaei SA. The effect of safranal on Th1/Th2 cytokine balance. Iran J Immunol 2016; 13:263-273.
203. Park S-H, Gong J-H, Choi Y-J, Kang M-K, Kim Y-H, Kang Y-H. Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice. PLoS One 2015; 10:e0143526.
204. Derakhshanfar A, Vosough D, Bidadkosh A. Pathological and doppler ultrasonographic study of kidney hemodynamic response in saffron (Crocus sativua) pretreated rats. Iran J Vet Surg 2008; 3:37-43.
205. Vosough D, Hosseini Hooshyar S, Moini E. Effect of saffron (Crocus sativus) administration on kidney function in normal cats as determined by use of 99mtc-dtpa renal scintigraphy. Iran J Vet Surg 2014; 9:45-50.
206. Omidi A, Totrabi Z. The protective role of saffron petal extracts on gentamicininduced nephrotoxicity in rats. Vet Sci Dev 2016; 6:9-12.
207. Omidi A, Riahinia N, Torbati MBM, Behdani MA. Evaluation of protective effect of hydroalcoholic extract of saffron petals in prevention of acetaminophen-induced renal damages in rats. Vet Sci Dev 2015; 5:68-71.
208. Mahmoudzadeh L, Najafi H, Ashtiyani SC, Yarijani ZM. Anti‐inflammatory and protective effects of saffron extract in ischaemia/reperfusion‐induced acute kidney injury. Nephrology 2017; 22:748-754.
209. Samarghandian S, Azimi-Nezhad M, Borji A, Farkhondeh T. Crocus sativus L.(saffron) extract reduces the extent of oxidative stress and proinflammatory state in aged rat kidney. Prog Nut 2016; 18:299-310.
210. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 2005; 8:387-393.
211. Abou-Hany HO, Atef H, Said E, Elkashef HA, Salem HA. Crocin mediated amelioration of oxidative burden and inflammatory cascade suppresses diabetic nephropathy progression in diabetic rats. Chem Biol Interact 2018; 284:90-100.
212. Chiavaroli A, Recinella L, Ferrante C, Locatelli M, Carradori S, Macchione N, et al. Crocus sativus, Serenoa repens and Pinus massoniana extracts modulate inflammatory response in isolated rat prostate challenged with LPS. J Biol Regul Homeost Agents 2017; 31:531-541.
213. Yari A, Sarveazad A, Asadi E, Raouf Sarshoori J, Babahajian A, Amini N, et al. Efficacy of Crocus sativus L. on reduction of cadmium‐induced toxicity on spermatogenesis in adult rats. Andrologia 2016; 48:1244-1252.
214. Hosseinzadeh H, Ziaee T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicineicine 2008; 15:491-495.
215. Sapanidou V, Taitzoglou I, Tsakmakidis Ι, Kourtzelis I, Fletouris D, Theodoridis A, et al. Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization. Theriogenology 2015; 84:1273-1282.
216. Potnuri AG, Allakonda L, Lahkar M. Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomed Pharmacother 2018; 101:174-180.
217. Bajbouj K, Schulze-Luehrmann J, Diermeier S, Amin A, Schneider-Stock R. The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines. BMC Complement Altern Med 2012; 12:69-77.
218. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 1996; 93:4765-4769.
219. Muriach M, López‐Pedrajas R, Barcia JM, Sanchez‐Villarejo MV, Almansa I, Romero FJ. Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J Neurochem 2010; 114:675-684.
220. Shamsi-Baghbanan H, Sharifian A, Esmaeili S, Minaei B. Hepatoprotective herbs, avicenna viewpoint. Iran Red Crescent Med J 2014; 16:e12313.
221. Mashmoul M, Azlan A, Mohtarrudin N, Yusof BNM, Khaza’ai H, Khoo HE, et al. Protective effects of saffron extract and crocin supplementation on fatty liver tissue of high-fat diet-induced obese rats. BMC Complement Altern Med 2016; 16:401-407.
222. Assimopoulou A, Sinakos Z, Papageorgiou V. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 2005; 19:997-1000.
223. Jin Y-Y, Zhang J-S, Zhang Y, Zhang Y-H. Studies on the intestinal absorption of crocin in rats and determination of the partition coefficient. J China Pharm Univ 2004; 35:283-284.
224. Giaccio M. Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nutr 2004; 44:155-172.
225. Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem 2005; 53:7302-7306.
226. Zhang Y, Liu J, Lin L, Li L. Pharmacokinetics of crocin-1 after oral administration in rats. Chin Pharm J 2012; 47:136-140.
227. Keyhanmanesh R, Boskabady MH, Eslamizadeh MJ, Khamneh S, Ebrahimi MA. The effect of thymoquinone, the main constituent of Nigella sativa on tracheal responsiveness and white blood cell count in lung lavage of sensitized guinea pigs. Planta Med 2010; 76:218-222.
228. Gholami Mahtaj L, Boskabady M, Mohamadian Roshan N. The effect of Zataria multiflora and its constituent, carvacrol, on tracheal responsiveness and lung pathology in guinea pig model of COPD. Phytother Res 2015; 29:730-736.