1. Fox R, Kitt J, Leeson P, Aye CYL, Lewandowski AJ. Preeclampsia: Risk factors, diagnosis, management, and the cardiovascular impact on the offspring. J Clin Med 2019; 8:1625-1646.
2. Barker DJ. The origins of the developmental origins theory. J Intern Med 2007; 261:412-417.
3. Cheong JN, Wlodek ME, Moritz KM, Cuffe JS. Programming of maternal and offspring disease: Impact of growth restriction, fetal sex and transmission across generations. J Physiol 2016; 594:4727-4740.
4. Paauw ND, van Rijn BB, Lely AT, Joles JA. Pregnancy as a critical window for blood pressure regulation in mother and child: Programming and reprogramming. Acta Physiol (Oxf) 2017; 219:241-259.
5. Vo T, Hardy DB. Molecular mechanisms underlying the fetal programming of adult disease. J Cell Commun Signal 2012; 6:139-153.
6. Ligi I, Grandvuillemin I, Andres V, Dignat-George F, Simeoni U. Low birth weight infants and the developmental programming of hypertension: A focus on vascular factors. Semin Perinatol 2010; 34:188-192.
7. Avila-Ramírez MA, Esteban-Martínez RL, López-Moctezuma E, Anguiano-Robledo L, Hernández-Campos ME, López-Sánchez P. (Pro)renin/renin receptor expression during normal and preeclamptic pregnancy in rats. Life Sci 2019; 216:22-28.
8. Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145.
9. Intapad S, Ojeda NB, Varney E, Royals TP, Alexander BT. Sex-specific effect of endothelin in the blood pressure response to acute angiotensin II in growth-restricted rats. Hypertension 2015; 66:1260-1266.
10. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 2004; 114:1128-1135.
11. Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 2006; 17:1950-1961.
12. Nguyen G, Muller DN. The biology of the (pro)renin receptor. J Am Soc Nephrol 2010; 21:18-23.
13. Vallee A, Levy BL, Blacher J. Interplay between the renin-angiotensin system, the canonical WNT/beta-catenin pathway and PPARgamma in hypertension. Curr Hypertens Rep 2018; 20:62-74.
14. Badimon L, Borrell-Pages M. Wnt signaling in the vessel wall. Curr Opin Hematol 2017; 24:230-239.
15. Anguiano-Robledo L, Reyes-Melchor PA, Bobadilla-Lugo RA, Perez-Alvarez VM, Lopez-Sanchez P. Renal angiotensin-II receptors expression changes in a model of preeclampsia. Hypertens Pregnancy 2007; 26:151-161.
16. Abitbol MM. Simplified technique to produce toxemia in the rat: considerations on cause of toxemia. Clin Exp Hypertens B 1982; 1:93-103.
17. Podjarny E, Losonczy G, Baylis C. Animal models of preeclampsia. Semin Nephrol 2004; 24:596-606.
18. Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: The reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 2012; 303:H1-H8.
19. Javadian P, Salmanian B, Javadi-Paydar M, Shamshirsaz AA, Ejtemaei Mehr S, Gharedaghi MH, et al. Effect of morphine on the reduced uteroplacental perfusion model of pre-eclampsia in rats. Eur J Obstet Gynecol Reprod Biol 2013; 168:161-166.
20. Ramirez-Montero C, Lima-Gomez V, Anguiano-Robledo L, Hernandez-Campos ME, Lopez-Sanchez P. Preeclampsia as predisposing factor for hypertensive retinopathy: Participation by the RAAS and angiogenic factors. Exp Eye Res 2020; 193:107981.
21. Sengupta P. The laboratory rat: Relating its age with human’s. Int J Prev Med 2013; 4:624-630.
22. Sihn G, Rousselle A, Vilianovitch L, Burckle C, Bader M. Physiology of the (pro)renin receptor: Wnt of change? Kidney Int 2010; 78:246-256.
23. Li C, Siragy HM. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-beta-catenin-snail signaling pathway. PLoS One; 9:e89233.
24. Kintiraki E, Papakatsika S, Kotronis G, Goulis DG, Kotsis V. Pregnancy-induced hypertension. Hormones (Athens) 2015; 14:211-223.
25. Sutton EF, Lob HE, Song J, Xia Y, Butler S, Liu CC, et al. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: A characterization of the BPH/5 mouse in postnatal life. Am J Physiol Regul Integr Comp Physiol 2017; 312:R485-R491.
26. Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care 2011; 41:158-176.
27. Ramkumar N, Kohan DE. The (pro)renin receptor: An emerging player in hypertension and metabolic syndrome. Kidney Int 2019; 95:1041-1052.
28. Takimoto-Ohnishi E, Murakami K. Renin-angiotensin system research: From molecules to the whole body. J Physiol Sci 2019; 69:581-587.
29. Miller AJ, Arnold AC. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin Auton Res 2019; 29:231-243.
30. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Nakagawa T, Nishiyama A, et al. Contribution of nonproteolytically activated prorenin in glomeruli to hypertensive renal damage. J Am Soc Nephrol 2006; 17:2495-2503.
31. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Suzuki F, Nakagawa T, et al. Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 2006; 47:894-900.
32. Jan Danser AH, Batenburg WW, van Esch JH. Prorenin and the (pro)renin receptor--an update. Nephrol Dial Transplant 2007; 22:1288-1292.
33. Zhao Y, Wang C, Wang C, Hong X, Miao J, Liao Y, et al. An essential role for Wnt/beta-catenin signaling in mediating hypertensive heart disease. Sci Rep 2018; 8:8996-9009.
34. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 2005; 4:2-5.
35. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J Am Soc Nephrol 2015; 26:107-120.