1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: CA Cancer J Clin 2021; 71:209-249.
2. Rezaei S, Mahjoubin Tehran M, Sahebkar A, Jalili A, Aghaee‐Bakhtiari SH. Androgen receptor‐related micro RNAs in prostate cancer and their role in antiandrogen drug resistance. J Cell Physiol 2020; 235:3222-3234.
3. Leung DK-W, Chiu PK-F, Ng C-F, Teoh JY-C. Novel strategies for treating castration-resistant prostate cancer. Biomedicines 2021; 9:339-Last page.
4. Rezaei S, Jalili A, Aghaee-Bakhtiari SH, Sahebkar A. Decoy oligodeoxynucleotide technology: an emerging paradigm for breast cancer treatment. Drug Discov. Today 2020; 25:195-200.
5. Mahjoubin-Tehran M, Rezaei S, Jalili A, Sahebkar A, Aghaee-Bakhtiari SH. A comprehensive review of online resources for microRNA–diseases associations: the state of the art. Brief Bioinform 2022; 23:bbab381.
6. von Brandenstein M, Bernhart SH, Pansky A, Richter C, Kohl T, Deckert M, et al. Beyond the 3′ UTR binding–microRNA-induced protein truncation via DNA binding. Oncotarget 2018; 9:32855.
7. Krupa R, Malecki W, Czarny P, Strycharz J, Jablkowski M, Kordek R, et al. MicroRNA profile and iron-related gene expression in hepatitis C-related hepatocellular carcinoma: a preliminary study. Arch Med Sci: AMS 2021; 17:1175-1183.
8. Bajan S, Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cells 2020; 9:137-163.
9. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020; 48:D148-D154.
10. Monga I, Kumar M. Computational resources for prediction and analysis of functional miRNA and their targetome. Computational Biology of Non-Coding RNA 2019: pp 215-250.
11. Mostaghel EA. Abiraterone in the treatment of metastatic castration-resistant prostate cancer. Cancer Manag Res 2014; 6:39-51.
12. Sridhar SS, Hotte SJ, Chin JL, Hudes GR, Gregg R, Trachtenberg J, et al. A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer. Am J Clin Oncol 2010; 33:609-613.
13. Sonpavde GP, Pond GR, Fizazi K, de Bono JS, Basch EM, Scher HI, et al. Cabozantinib for progressive metastatic castration-resistant prostate cancer following docetaxel: combined analysis of two phase 3 trials. Eur Urol Oncol 2020; 3:540-543.
14. Monk P, Liu G, Stadler WM, Geyer S, Huang Y, Wright J, et al. Phase II randomized, double-blind, placebo-controlled study of tivantinib in men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Invest New Drugs 2018; 36:919-926.
15. Choi YJ, Kim HS, Park SH, Kim BS, Kim KH, Lee HJ, et al. Phase II study of Dovitinib in patients with castration-resistant prostate cancer (KCSG-GU11-05). Cancer Res Treat 2018; 50:1252-1259.
16. Rescigno P, de Bono J, Aparicio A, Chowdhury S, Twardowski P, Dawson N, et al. Phase I, open-label, dose-finding study of GSK2636771, a phosphoinositide 3-kinase (PI3K) β inhibitor, in combination with enzalutamide in male subjects with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 2017; 28:v273.
17. Nandana S, Chung LW. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. AJCEU 2014; 2:92-101.
18. Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget 2014; 5:7217-7259.
19. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46:W60-W64.
20. Maere S, Heymans K, Kuiper M. BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21:3448-3449.
21. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50:W216-W221.
22. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009; 4:44-57.
23. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27-30.
24. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018; 46:D239-D245.
25. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognitionrget recognition. Nat Genet 2007; 39:1278-1284.
26. McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, et al. The biochemical basis of microRNA targeting efficacy. Science 2019; 366:eaav1741.
27. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019; 20:1-10.
28. Hsu JB-K, Chiu C-M, Hsu S-D, Huang W-Y, Chien C-H, Lee T-Y, et al. miRTar: an integrated system for identifying miRNA-target interactions in human. BMC bioinformatics 2011; 12:1-12.
29. Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, Butler AE, Oskuee RK, Jalili A. In silico and in vitro analysis of microRNAs with therapeutic potential in atherosclerosis. Sci Rep 2022; 12:20334.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 2001; 25:402-408.
31.Kalofonou F, Sita-Lumsden A, Leach D, Fletcher C, Waxman J, Bevan CL. MiR-27a-3p: An AR-modulatory microRNA with a distinct role in prostate cancer progression and therapy. ASCO; 2020.
32. Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in solid tmors: a review based on mechanisms and clinical observations. Front Oncol 2019; 9:893.
33. Li Y, Li J, Sun X, Chen J, Sun X, Zheng J, et al. MicroRNA‑27a functions as a tumor suppressor in renal cell carcinoma by targeting epidermal growth factor receptor. Oncol Lett 2016; 11:4217-4223.
34. Jiang Y, Duan Y, Zhou H. MicroRNA-27a directly targets KRAS to inhibit cell proliferation in esophageal squamous cell carcinoma. Oncol Lett 2015; 9:471-477.
35. Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013; 4:346-361.
36. Jafari Najaf Abadi MH, Khorashadizadeh M, Zarei Jaliani H, Jamialahmadi K, Aghaee‐Bakhtiari SH. miR‐27 and miR‐124 target AR coregulators in prostate cancer: Bioinformatics and in vitro analysis. Andrologia 2022:e14497.
37. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32:4130-4138.
38. Shi X-B, Xue L, Ma A-H, Tepper CG, Gandour-Edwards R, Kung H-J, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32:4130-4138.
39. Ged Y, Horgan AM. Management of castrate-resistant prostate cancer in older men. J Geriatr Oncol 2016; 7:57-63.
40. Wu Z, Huang W, Chen B, Bai P, Wang X, Xing J. Up-regulation of miR-124 inhibits invasion and proliferation of prostate cancer cells through mediating JAK-STAT3 signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21:2338-2345.
41. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 27:2240-2252.
42. miR-15a and miR-16-1 microRNAs are prostate cancer suppressors. Nat Clin Pract Urol. 2009; 6:4-4.
43. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010; 17:215-220.
44. Jin W, Chen F, Wang K, Song Y, Fei X, Wu B. miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF-β signaling pathway. Biomed Pharmacother 2018; 104:637-644.
45. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14:1271-1277.