Preclinical models of atherosclerosis: An overview

Document Type : Review Article

Authors

1 Galgotias College of Pharmacy, Greater Noida, U.P., India

2 Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India

3 AnovIP, New Delhi, India

Abstract

Atherosclerosis is a primary cause of illness and death globally and its mechanism is still unclear. Different animal models have been created to evaluate the progression of atherosclerosis, allowing researchers to carefully control the circumstances of the experiment as well as the nutrition and environmental risk factors. To investigate the negative effects of various interventions, pathophysiological alterations might be generated utilizing genetic or pharmacological methods. These models’ molecular and pathophysiological mechanisms have been clarified through experiments, and they have served as platforms for the creation of new drugs. Different models can be employed to address various research problems, each with its own benefits and drawbacks. In the current review study, various species of atherosclerosis models are discussed, along with the viability of using them in experiments.

Keywords

Main Subjects


1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll Cardiol 2020; 22: 2982-3021.
2. Björkegren JL, Lusis AJ. Atherosclerosis: Recent developments. Cell 2022; 185:1630-1645.
3. Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Neth Heart J 2017; 25: 231-242.
4. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology of atherosclerosis. Int J Mol Sci 2022;23:3346-3353.
5. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext 2019; 3: 1-12.
6. Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients. 2018; 10:604-610.
7. Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, et al. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin. 2023; 7:1-8.
8. Veseli BE, Perrotta P, De Meyer GR, Roth L, Van der Donckt C, Martinet W, et al. Animal models of atherosclerosis. Eur J Pharmacol 2017; 816: 3-13.
9. Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426.
10. Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis. Mol Med Rep 2021; 24:1-4.
11. Lee YT, Lin HY, Chan YW, Li KH, To OT, Yan BP, et al. Mouse models of atherosclerosis: A historical perspective and recent advances. Lipids  Health Dis 2017;16:1-10.
12. Leong XF, Ng CY, Jaarin K. Animal models in cardiovascular research: Hypertension and atherosclerosis. BioMed Res Int 2015:2015:528757-528767.
13. Drew AF. Animal models of diet-induced atherosclerosis. Exp Methods Phys Sci 2001;52:1-6.
14. McNamara DJ. Dietary cholesterol and atherosclerosis. Biochim Biophys Acta 2000; 3:310-20.
15. Getz GS, Reardon CA. Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:1104-1115.
16. Arya P, Bhandari U. Involvement of the toll-like receptors-2/ nuclear factor-kappa B signaling pathway in atherosclerosis induced by high-fat diet and zymosan in C57BL/6 mice. Indian J Pharmacol 2020; 52: 203-209.
17. Walker AE, Breevoort SR, Durrant JR, Liu Y, Machin DR, Dobson PS, et al. The pro-atherogenic response to disturbed blood flow is increased by a western diet, but not by old age. Sci Rep 2019; 9:2925-2931.
18. Magee DF, Kim KS, Ivy AC. Effect of dietary protein on the fat content of feces. Am J Physiol 1953;175: 310-312.
19. Tyner EP, Lewis HB, Eckstein HC. Niacin and the ability ot cystine to augment deposition of liver fat. J Biol Chem 1950; 187:651-654.
20. Marcus JB. Culinary nutrition: The science and practice of healthy cooking. Academic Press; 2013; 2:1-5.
21. Panchal SK, Brown L. Rodent models for metabolic syndrome research. Biomed Res Int 2011; 2011: 351-362.
22. Osganian SK, Stampfer MJ, Rimm E, Spiegelman D, Hu FB, Manson JE, et al. Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol 2003; 42: 246-252.
23. Mitu O, Cirneala IA, Lupsan AI, Iurciuc M, Mitu I, Dimitriu DC, et al. The effect of vitamin supplementation on subclinical atherosclerosis in patients without manifest cardiovascular diseases: Never-ending hope or underestimated effect? Molecules 2014; 25: 1710-1717.
24. Budiarsana I, Praharani L, Krisnan R, Sutama IK. Effect of choline chloride supplementation on milk production and milk composition of Etawah grade goats. J Anim Sci 2016; 58: 1-2.
25. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003;171: 417-425.
26. Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res 2003; 9:176-180.
27. Lamkanfi M, Malireddi RS, Kanneganti TD. Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 2009; 284: 20574-20581.
28. Dharavath RN, Kumar V, Chopra K. Zymosan a an old tool in experimental pharmacology with newer applications. Curre Res Diabetes & Obes J 2017; 4: 58-61.
29. Arya P, Kumar N, Bhandari U, Thapliyal S, Sharma V. Hidden attributes of zymosan in the pathogenesis of inflammatory diseases: A tale of the fungal agent. Iran J Basic Med Sci 2023; 26: 370-380.
30. Malik P, Berisha SZ, Santore J, Agatisa-Boyle C, Brubaker G, Smith JD. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res 2011;52:951-957.
31. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti‐inflammatory action. Clin Exp Pharmacol Physiol 2008; 35:1238-1244.
32. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374: 341-344
33. Liu Y, Zhang HG, Jia Y, Li XH. Panax notoginseng saponins attenuate atherogenesis accelerated by zymosan in rabbits. Biol Pharm Bull 2010; 33: 1324-1330.
34. Yuan Z, Liao Y, Tian G, Li H, Jia Y, Zhang H, et al. Panax notoginseng saponins inhibit Zymosan A induced atherosclerosis by suppressing integrin expression, FAK activation and NF-κB translocation. J Ethnopharmacol 2011; 138:150-155.
35. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci 1992; 89: 4471-4475.
36. Lo Sasso G, Schlage WK, Boué S, Veljkovic E, Peitsch MC, Hoeng J. The Apoe−/− mouse model: A suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med 2016; 14: 140-146.
37. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol 1994; 14:133-140.
38. Plump AS, Breslow JL. Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr 1995;15: 495-518.
39. Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb Vasc Biol 1994; 14: 141-147.
40. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 1994; 93:1885-1893.
41. Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, et al. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PloS One 2012;7:835-845.
42. Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2000; 20: 2336-2345.
43. Bonthu S, Heistad DD, Chappell DA, Lamping KG, Faraci FM. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol 1997;17: 2333-2340.
44. Caligiuri G, Levy B, Pernow J, Thorén P, Hansson GK. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice.  Proc Natl Acad Sci U S A 1999; 96: 6920-6924.
45. Lutgens E, Daemen M, Kockx M, Doevendans P, Hofker M, Havekes L, et al. Atherosclerosis in APOE* 3-Leiden transgenic mice: From proliferative to atheromatous stage. Circulation 1999; 99: 276-283. 
46. Bjørklund MM, Hollensen AK, Hagensen MK, Dagnæs-Hansen F, Christoffersen C, Mikkelsen JG, et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Cir Res 2001; 114:1684-1689.
47. Ferri N. Proprotein convertase subtilisin/kexin type 9: From the discovery to the development of new therapies for cardiovascular diseases. Scientifica 2012; 2012:1-10
48. Keeter WC, Carter NM, Nadler JL, Galkina EV. The AAV-PCSK9 m0urine model of atherosclerosis and metabolic dysfunction. Eur Heart J Open 2022; 2:28-35.
49. Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, et al. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 2015; 35: 50-59.
50. Wang X, Fu Y, Xie Z, Cao M, Qu W, Xi X, et al. Establishment of a novel mouse model for atherosclerotic vulnerable plaque. Front Cardiovasc Med 2021;8:642751-642761.
51. Van Herck JL, De Meyer GR, Martinet W, Van Hove CE, Foubert K, Theunis MH, et al. Impaired fibrillin-1 function promotes features of plaque instability in apolipoprotein E-deficient mice. Circulation 2009;120: 2478-2487.
52. Phinikaridou A, Hallock KJ, Qiao Y, Hamilton JA. A robust rabbit model of human atherosclerosis and atherothrombosis . J Lipid Res 2009; 50:787-797.
53. Griggs TR, Bauman RW, Reddick RL, Read MS, Koch GG, Lamb MA. Development of coronary atherosclerosis in  swine with severe hypercholesterolemia. Lack of influence of von Willebrand factor or acute intimal injury. Arteriosclerosis 1986; 6: 155-165.
54. Holvoet P, Theilmeier G, Shivalkar B, Flameng W, Collen D.  LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature  pigs. Arterioscler Thromb Vasc Biol 1998; 18: 415-422.
55. Kapourchali FR, Surendiran G, Chen L, Uitz E, Bahadori B, Moghadasian MH. Animal models of atherosclerosis. World J Clin Cases 2014; 2: 126-130.
56. Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, To TLO et al. Animal models of atherosclerosis. Biomed Rep 2017; 6: 259-266.
57. DePalma RG, Klein L, Bellon EM, Koletsky S. Regression of atherosclerotic plaques in rhesus monkeys: Angiographic, morphologic, and angiochemical changes. Arch Surg 1980;115:1268-1278.
58. Zaib-ul-Nisa IN, Saleem A, Naeem M. Animal models of atherosclerosis. Sch Int J Anat Physiol 2022;5:34-40.
59. Fang L, Liu C, Miller YI. Zebrafish models of dyslipidemia: Relevance to atherosclerosis and angiogenesis. Transl Res 2014;163: 99-108.
60. Tang D, Geng F, Yu C, Zhang R. Recent application of zebrafish models in atherosclerosis research. Front Cell Dev Biol 2021;9:643-697.
61. Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26: 242-249
62. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, et al. Animal models of cardiovascular diseases. BioMed Res Int 2011; 2011: 1-10.