Electroacupuncture at the Dazhui and Baihui acupoints and different frequencies (10 and 50 Hz) protects against apoptosis by up-regulating ERK1/2-mediated signaling in rats after global cerebral ischemia

Document Type : Original Article


1 School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan

2 Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung 43303, Taiwan

3 Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan

4 Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan


Objective(s): This study assessed the effects of electroacupuncture (EA) stimulation at different frequencies at the Dazhui and Baihui acupoints in the subacute phase after transient global cerebral ischemia (GCI). 
Materials and Methods: Rats were subjected to GCI for 25 min, followed by reperfusion for 7 days. EA at acupoints was performed at 10, 30, or 50 Hz, 1 day after reperfusion and then once daily for 6 consecutive days. 
Results: EA at acupoints at 10 and 50 Hz effectively down-regulated apoptosis in the hippocampal cornu ammonis 1(CA1) area and ameliorated memory deficits. Moreover, EA treatment at 10 and 50 Hz markedly increased phospho (p)-extracellular signal-regulated protein kinase 1/2 (ERK1/2), p-ERK1/2/neuronal nuclei (NeuN), p-cAMP response element-binding protein (CREB)/p-ERK1/2, B-cell lymphoma-2 (Bcl-2)/p-CREB, and X-linked inhibitor of apoptosis protein/NeuN expression levels and decreased Bcl-2 homologous antagonist/killer, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI, cytochrome c, cleaved caspase-3, and apoptosis-inducing factor expression levels. Furthermore, 10-Hz EA treatment effectively increased p-p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK/NeuN, and p-CREB/p-p38 MAPK expression levels. Pretreatment with U0126 (ERK1/2 inhibitor) completely abrogated the effects of 10- and 50-Hz EA treatments on the aforementioned protein expression levels. Similarly, pretreatment with SB203580 (p38 MAPK inhibitor) completely abrogated the effects of 10-Hz treatment on the aforementioned protein expression levels. 
Conclusion: The effects of 10- and 50-Hz EA treatments on mitochondria-related apoptosis can be attributed to the activation of ERK1/2/p38 MAPK/CREB/Bcl-2- and ERK1/2/CREB/Bcl-2-mediated signaling, respectively, in the hippocampal CA1 area at 7 days after transient GCI. 


Main Subjects

1.    Badr R, Hashemi M, Javadi G, Movafagh A, Mahdian R. Assessment of global ischemic/reperfusion and Tacrolimus administration on CA1 region of hippocampus: gene expression profiles of BAX and BCL2 genes. Bratisl Lek Listy 2016; 117: 358-362. 
2.    Guo X, Yuan J, Wang J, Cui C, Jiang P. Calcitriol alleviates global cerebral ischemia-induced cognitive impairment by reducing apoptosis regulated by VDR/ERK signaling pathway in rat hippocampus. Brain Res 2019; 1724: 146430. 
3.    Aboutaleb N, Shamsaei N, Rajabi H, Khaksari M, Erfani S, Nikbakht F, et al. Protection of hippocampal CA1 neurons Against ischemia/reperfusion injury by exercise preconditioning via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. Basic Clin Neurosci 2016; 7: 21-29. 
4.    Xue RL, He JX, Wang N, Yao FZ, Lv JR, Wu G. Relationship between transmembrane signal transduction pathway and DNA repair and the mechanism after global cerebral ischemia-reperfusion in rats. Neurosci Bull 2009; 25:115-121. 
5.    Lee SS, Kim CJ, Shin MS, Lim BV. Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil 2020; 16:49-57.  
6.    Jover-Mengual T, Zukin RS, Etgen AM. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology 2007; 148: 1131-1143. 
7.    Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000; 20: 4506-4514. 
8.    Wang Q, Zhang QG, Wu DN, Yin XH, Zhang GY. Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway. Acta Pharmacol Sin 2007; 28: 19-27. 
9.    Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit alpha and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 2013; 25: 1845-1851. 
10.    Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 1998; 17: 4426-4441. 
11.    Kovalska M, Kovalska L, Mikuskova K, Adamkov M, Tatarkova Z, Lehotsky J. p-ERK involvement in the neuroprotection exerted by ischemic preconditioning in rat hippocampus subjected to four vessel occlusion. J Physiol Pharmacol 2014; 65: 767-776. 
12.    Poddar R, Paul S. Novel crosstalk between ERK MAPK and p38 MAPK leads to homocysteine-NMDA receptor-mediated neuronal cell death. J Neurochem 2013; 124: 558-570. 
13.    Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 2002; 22: 631-647. 
14.    Anilkumar U, Prehn JH. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci 2014; 8: 281-286. 
15.    Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan JQ, et al. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 2005; 25: 234-246. 
16.    Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab 2004; 24: 681-692. 
17.    Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005; 25: 899-910. 
18.    Liu Z, Chen X, Gao Y, Sun S, Yang L, Yang Q, et al. Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci Rep 2015; 5: 9490. 
19.    Liu J, Wang Q, Yang S, Huang J, Feng X, Peng J, et al. Electroacupuncture Inhibits Apoptosis of Peri-Ischemic Regions via Modulating p38, Extracellular Signal-Regulated Kinase (ERK1/2), and c-Jun N Terminal Kinases (JNK) in Cerebral Ischemia-Reperfusion-Injured Rats. Med Sci Monit 2018; 24: 4395-4404.
20.    Duan X, Zhang L, Yu J, Wei W, Liu X, Xu F, Guo S.  The effect of different frequencies of electroacupuncture on BDNF and NGF expression in the hippocampal CA3 area of the ischemic hemisphere in cerebral ischemic rats. Neuropsychiatr Dis Treat 2018; 14: 2689-2696. 
21.    Cheng CY, Lin JG, Su SY, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemia in rats. BMC Complement Altern Med 2014; 14: 92-102. 
22.    Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. PLoS One 2014; 9: e91426.
23.    Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med 2015; 15: 241-255.  
24.    Cheng CY, Huang HC, Kao ST, Lee YC. Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK-mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats. J Ethnopharmacol 2021; 278:114301.  
25.    Kuo CT, Lin YW, Tang NY, Cheng CY, Hsieh CL. Electric stimulation of the ears ameliorated learning and memory impairment in rats with cerebral ischemia-reperfusion injury. Sci Rep 2016; 6: 20381.
26.    Lee YC, Kao ST, Cheng CY: Acorus tatarinowii Schott extract reduces cerebral edema caused by ischemia-reperfusion injury in rats: involvement in regulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated signaling. BMC Complement Med Ther 2020; 20:374-390.
27.    Cheng CY, Chiang SY, Kao ST, Huang SC. Alpinia oxyphylla Miq extract reduces cerebral infarction by down-regulating JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signaling in the acute phase of transient focal cerebral ischemia in rats. Chin Med 2021; 16: 82-102. 
28.    Sun D, Wang W, Wang X, Wang Y, Xu X, Ping F, et al. bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis 2018; 9: 172-185. 
29.    Cheng O, Ostrowski RP, Wu B, Liu W, Chen C, Zhang JH. Cyclooxygenase-2 mediates hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke 2011; 42: 484-490. 
30.    Yuan Y, Shan X, Men W, Zhai H, Qiao X, Geng L, et al. The effect of crocin on memory, hippocampal acetylcholine level, and apoptosis in a rat model of cerebral ischemia. Biomed Pharmacother 2020; 130: 110543.
31.    Zhu Y, Zeng Y. Electroacupuncture protected pyramidal cells in hippocampal CA1 region of vascular dementia rats by inhibiting the expression of p53 and Noxa. CNS Neurosci Ther 2011; 17: 599-604. 
32.    Xue X, You Y, Tao J, Ye X, Huang J, Yang S, et al. Electro-acupuncture at points of Zusanli and Quchi exerts anti-apoptotic effect through the modulation of PI3K/Akt signaling pathway. Neurosci Lett 2014; 558: 14-19. 
33.    Liu L, Li CJ, Lu Y, Zong XG, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep 2015; 5: 14474-14490. 
34.    Han D, Scott EL, Dong Y, Raz L, Wang R, Zhang Q. Attenuation of mitochondrial and nuclear p38alpha signaling: A novel mechanism of estrogen neuroprotection in cerebral ischemia. Mol Cell Endocrinol 2015; 400: 21-31. 
35.    Abdullah L, Hills LB, Winter EB, Huang YH. Diverse Roles of Akt in T cells. Immunometabolism 2021; 3: e210007. 
36.    Feng C, Wan H, Zhang Y, Yu L, Shao C, He Y et al. Neuroprotective effect of danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway. Front Pharmacol 2020; 11: 298.  
37.    Huang CY, Liou YF, Chung SY, Lin WY, Jong GP, Kuo CH, et al. Role of ERK signaling in the neuroprotective efficacy of magnesium sulfate treatment during focal cerebral ischemia in the gerbil cortex. Chin J Physiol 2010; 53: 299-309. 
38.    Cheng CY, Tang NY, Kao ST, Hsieh CL. Ferulic acid administered at various time points protects against cerebral infarction by activating p38 MAPK/p90RSK/CREB/Bcl-2 anti-apoptotic signaling in the subacute phase of cerebral ischemia-reperfusion injury in rats. PLoS One 2016; 11: e0155748. 
39.    Choi IY, Hwang L, Jin JJ, Ko IG, Kim SE, Shin MS, et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp Ther Med 2017; 13: 107-116.
40.    Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863: 2977-2992. 
41.    Smaili SS, Hsu YT, Sanders KM, Russell JT, Youle RJ. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ 2001; 8: 909-920. 
42.    Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001; 276: 18361-18374. 
43.    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-1517. 
44.    Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24: 458-466. 
45.    Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010; 1802: 92-99. 
46.    Chelluboina B, Klopfenstein JD, Gujrati M, Rao JS, Veeravalli KK. Temporal regulation of apoptotic and anti-apoptotic molecules after middle cerebral artery occlusion followed by reperfusion. Mol Neurobiol 2014; 49: 50-65. 
47.    Strosznajder R, Gajkowska B. Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury. the immunocytochemical study. Acta Neurobiol Exp 2006; 66: 15-22.
48.    Cheng CY, Kao ST, Lee YC. Angelica sinensis extract protects against ischemia-reperfusion injury in the hippocampus by activating p38 MAPK-mediated p90RSK/p-Bad and p90RSK/CREB/BDNF signaling after transient global cerebral ischemia in rats. J Ethnopharmacol 2020; 252: 112612.