Novel drugs affecting diabetic peripheral neuropathy

Document Type : Review Article


Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt


Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global diabetic population and leading to severe complications, including pain, impaired mobility, and potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). This review examines the multifaceted nature of DPN, focusing on the intricate interplay between oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists in addressing the underlying problem of DPN. The results underscore the complexity of DPN and the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse processes and pathways involved in DPN pathogenesis.


Main Subjects

1. Juster-Switlyk K, Smith AG. Updates in diabetic peripheral neuropathy. F1000Res 2016: 5: F1000-1006.
2. Yoo M, Sharma N, Pasnoor M, Kluding PM. Painful diabetic peripheral neuropathy: Presentations, mechanisms, and exercise therapy. J Diabetes Metab 2013:10:005-14.
3. Oliver TI, Mutluoglu M. Diabetic Foot Ulcer. StatPearls. Treasure Island (FL)2022.
4. Abdissa D. Prevalence and associated factors of painful diabetic peripheral neuropathy among diabetic patients on follow up at Jimma University Medical Center. J Diabetes Metab Disord 2020; 19:1407-1413.
5. A Sedik A. Modulation activity of vildagliptin on hepatic complications and lipoprotein abnormalities associated with insulin resistance in rats. Egypt J Chem 2022; 65:541-547.
6. Dobretsov M, Romanovsky D, Stimers JR. Early diabetic neuropathy: Triggers and mechanisms. World J Gastroenterol 2007; 13:175-191.
7. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5:42-81.
8. Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig 2017; 8:646-655.
9. Anandhanarayanan A, Teh K, Goonoo M, Tesfaye S, Selvarajah D. Diabetic Neuropathies. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. Endotext. South Dartmouth (MA)2000.
10. Tesfaye S, Boulton AJ, Dickenson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 2013; 36:2456-2465.
11. Yu Y. Gold Standard for Diagnosis of DPN. Front Endocrinol (Lausanne) 2021; 12:719356-719361.
12. Cohen K, Shinkazh N, Frank J, Israel I, Fellner C. Pharmacological treatment of diabetic peripheral neuropathy. P T 2015; 40:372-388.
13. Sadosky A, Schaefer C, Mann R, Bergstrom F, Baik R, Parsons B, et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: Results from a retrospective chart review and cross-sectional survey. Diabetes Metab Syndr Obes 2013; 6: 79-92.
14. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2012; 28: 8-14.
15. Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J, et al. Painful and painless diabetic neuropathies: What is the difference? Curr Diab Rep 2019; 19: 32-44.
16. Sifuentes-Franco S, Pacheco-Moisés FP. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy.  J Diabetes Res 2017; 2017:1673081-1673095.
17. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2:18-32.
18. Qureshi Z, Ali MN. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J Diabetes Res 2022; 2022:9989272-9989290.
19. Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S, et al. New perspective in diabetic neuropathy: From the periphery to the brain, a call for early detection, and precision medicine. Front Endocrinol (Lausanne) 2019; 10:929-941.
20. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14:162-173.
21. Javed S, Petropoulos IN, Alam U, Malik RA. Treatment of painful diabetic neuropathy. Ther Adv Chronic Dis 2015; 6:15-28.
22. Luo X, Wu J, Jing S, Yan L-J. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis 2016; 7:90-110.
23. Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2013; 51:56-65.
24. Arora K, Tomar PC, Mohan V. Diabetic neuropathy: An insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784.
25. Goto Y, Hotta N, Shigeta Y, Sakamoto N, Kikkawa R. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed  Pharmacother 1995; 49: 269-277.
26. Chalk C, Benstead TJ, Moore F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev 2007; 2007: CD004572-4608.
27. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Int J Exp Diabetes Res 2002; 3: 21-36.
28. Matsumoto T, Ono Y, Kurono M, Kuromiya A, Nakamura K, Bril V. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J Pharmacol Sci 2008; 107:231-237.
29. Singh Grewal A, Bhardwaj S, Pandita D, Lather V, Singh Sekhon B. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem 2016; 16:120-162.
30. Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015; 2015:515042-515056.
31. Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int 2000; 58:S13-S18.
32. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel R. Benfotiamine in diabetic polyneuropathy (BENDIP): Results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol diabetes 2008; 116:600-605.
33. Bönhof GJ, Sipola G, Strom A, Herder C, Strassburger K, Knebel B, et al. BOND study: A randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open 2022; 12:e057142-057151.
34. Popa AR, Bungau S, Vesa CM, Bondar AC, Pantis C, Maghiar O, et al. Evaluating the efficacy of the treatment with benfotiamine and alpha-lipoic acid in distal symmetric painful diabetic polyneuropathy. Rev Chim 2019; 70:3108-3114.
35. Mousa SA, Shaqura M, Winkler J, Khalefa BI, Al-Madol MA, Shakibaei M, et al. Protein kinase C-mediated mu-opioid receptor phosphorylation and desensitization in rats, and its prevention during early diabetes. Pain 2016; 157:910-921.
36. Wang S, Joseph J, Ro JY, Chung M-K. Modality-specific mechanisms of PKC-induced hypersensitivity of TRPV1: S800 is a polymodal sensitization site. Pain 2015; 156:931-952.
37. Zan Y, Kuai C-X, Qiu Z-X, Huang F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am J Chin Med 2017; 45:1709-1723.
38. Bansal D, Badhan Y, Gudala K, Schifano F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials. Diabetes Metab J 2013; 37:375-384.
39. Galvez MI. Protein kinase C inhibitors in the treatment of diabetic retinopathy. Review. Curr Pharm Biotechnol 2011; 12:386-391.
40. Pacher P, Szabó C. Role of poly (ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 2005; 7:1568-1580.
41. Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523.
42. Ilnytska O, Lyzogubov VV, Stevens MJ, Drel VR, Mashtalir N, Pacher P, et al. Poly (ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006; 55:1686-1694.
43. Obrosova IG, Xu W, Lyzogubov VV, Ilnytska O, Mashtalir N, Vareniuk I, et al. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 2008; 44:972-981.
44. Xu S, Li J, Zhai M, Yao X, Liu H, Deng T, et al. 1, 25-(OH) 2D3 protects Schwann cells against advanced glycation end products-induced apoptosis through PKA-NF-κB pathway. Life Sci 2019; 225:107-116.
45. Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J 2018; 42:188-195.
46. Xu S, Bao W, Men X, Liu Y, Sun J, Li J, et al. Interleukin-10 protects schwann cells against advanced glycation end products-induced apoptosis via NF-κB suppression. Exp Clin Endocrinol  Diabetes 2020; 128:89-96.
47. Zhang X, Xu L, Chen W, Yu X, Shen L, Huang Y. Pyridoxamine alleviates mechanical allodynia by suppressing the spinal receptor for advanced glycation end product-nuclear factor-κ B/extracellular signal-regulated kinase signaling pathway in diabetic rats. Mol Pain 2020; 16:1744806920917251-1744806920917262.
48. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev 2013:2013:168039-168053.
49. Basit A, Basit KA, Fawwad A, Shaheen F, Fatima N, Petropoulos IN, et al. Vitamin D for the treatment of painful diabetic neuropathy. BMJ Open Diabetes Res Care 2016; 4:e000148-153.
50. Sedik AA, Hassan A, Saleh DO. Neuromodulatory role of L-arginine: Nitric oxide precursor against thioacetamide-induced-hepatic encephalopathy in rats via downregulation of NF-κB-mediated apoptosis. Environ Sci Pollut Res 2023; 30:84791-84804.
51. Sedik AA, Hassan SA, Shafey HI, Khalil WK, Mowaad NA. Febuxostat attenuates aluminum chloride-induced hepatorenal injury in rats with the impact of Nrf2, Crat, Car3, and MNK-mediated apoptosis. Environ Sci Pollut Res 2023; 30: 83356-83375.
52. Sedik AA, Amer AA. Modulatory effects of cilostazol; An Nrf2/HO-1 activator against NAFLD in rats confirmed by molecular docking and FTIR studies. Egypt J Chem 2022; 65:493-508.
53. Yerra VG, Negi G, Sharma SS, Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 2013; 1:394-397.
54. Mijnhout G, Alkhalaf A, Kleefstra N, Bilo H. Alpha lipoic acid: A new treatment for neuropathic pain in patients with diabetes. Neth J Med 2010; 68:158-162.
55. Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Möller W, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Free Radic Res 1999; 31:171-179.
56. Di Stefano G, Di Lionardo A, Galosi E, Truini A, Cruccu G. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review. J Pain Res 2019; 12:1341-1351.
57. Kuhad A, Chopra K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009; 57:456-462.
58. Dong J, Zuo Z, Yan W, Liu W, Zheng Q, Liu X. Berberine ameliorates diabetic neuropathic pain in a rat model: Involvement of oxidative stress, inflammation, and μ-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1141-1149.
59. Ranjithkumar R, Prathab Balaji S, Balaji B, Ramesh R, Ramanathan M. Standardized aqueous Tribulus terristris (Nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: role of oxidative stress and inflammatory mediators. Phytother Res 2013; 27:1646-1657.
60. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol 2016; 36:883-892.
61. Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 2019; 69:57-64.
62. Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2018; 26:993-1003.
63. Chen Y-W, Hsieh P-L, Chen Y-C, Hung C-H, Cheng J-T. Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg 2013; 116:482-490.
64. Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res 2011; 4:169-175.
65. Khalifa M, Fayed R, Sedik AA, Khalil HM. Dose-dependent toxic effects of di-(2-ethylhexyl) phthalate in male rats: Focus on behavioral alterations and inducing TLR4/NF-κB signaling pathway. Toxicol Appl Pharmacol 2023; 468:116515.
66. Jin HY, Park TS. Role of inflammatory biomarkers in diabetic peripheral neuropathy. J Diabetes Investig 2018; 9:1016-1018.
67. Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013; 262:35-45.
68. Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci 2014; 35:1067-1073.
69. Daugherty DJ, Marquez A, Calcutt NA, Schubert D. A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology 2018; 129: 26-35.
70. Kandimalla R, Dash S, Kalita S, Choudhury B, Malampati S, Devi R, et al. Bioactive fraction of Annona reticulata bark (or) Ziziphus jujuba root bark along with insulin attenuates painful diabetic neuropathy through inhibiting nf-kappab inflammatory cascade. Front Cell Neurosci 2017; 11:73-88.
71. Zhang BY, Zhang YL, Sun Q, Zhang PA, Wang XX, Xu GY, et al. Alpha-lipoic acid downregulates TRPV1 receptor via NF-κB and attenuates neuropathic pain in rats with diabetes. CNS Neurosci Ther 2020; 26:762-772.
72. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol 2016; 36:883-892.
73. Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: Role of protein kinase C and reactive oxygen species. Circulation 2003; 107:1017-1023.
74. Suarez-Mendez S, Tovilla-Zarate CA, Ortega-Varela LF, Bermudez-Ocana DY, Ble-Castillo JL, Gonzalez-Castro TB, et al. Isobolographic analyses of proglumide-celecoxib interaction in rats with painful diabetic neuropathy. Drug Dev Res 2017; 78:116-123.
75. Kimura S, Kontani H. Demonstration of antiallodynic effects of the cyclooxygenase-2 inhibitor meloxicam on established diabetic neuropathic pain in mice. J Pharmacol Sci 2009; 110:213-217.
76. Matsunaga A, Kawamoto M, Shiraishi S, Yasuda T, Kajiyama S, Kurita S, et al. Intrathecally administered COX-2 but not COX-1 or COX-3 inhibitors attenuate streptozotocin-induced mechanical hyperalgesia in rats. Eur J Pharmacol 2007; 554:12-17.
77. Price S, Agthong S, Middlemas A, Tomlinson D. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy interactions with aldose reductase. Diabetes 2004; 53:1851-1856.
78. Zheng X, Chen L, Du X, Cai J, Yu S, Wang H, et al. Effects of hyperbaric factors on lidocaine-induced apoptosis in spinal neurons and the role of p38 mitogen-activated protein kinase in rats with diabetic neuropathic pain. Exp Ther Med 2017; 13:2855-2861.
79. Zhou J, Du X, Long M, Zhang Z, Zhou S, Zhou J, et al. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur J Pharmacol 2016; 774:87-94.
80. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab 2014; 11:1-9.
81. Rahman MH, Jha MK, Kim J-H, Nam Y, Lee MG, Go Y, et al. Pyruvate dehydrogenase kinase-mediated glycolytic metabolic shift in the dorsal root ganglion drives painful diabetic neuropathy. J Biol Chem 2016; 291:6011-6025.
82. Katayama Y, Kawata Y, Moritoh Y, Watanabe M. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, ameliorates type 2 diabetes via reduced gluconeogenesis. Heliyon 2022; 8:e08889.
83. Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q, et al. LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol Brain 2016; 9:1-13.
84. Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379.
85. Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes 2017; 66:3111-3121.
86. Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia 2020; 63:431-443.
87. Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 2012; 1:557-565.
88. Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede R-D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J Neural Transm 2020; 127:589-624.
89. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444.
90. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: A position statement by the american diabetes association. Diabetes Care 2017; 40:136-154.
91. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, et al. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin Proc 2010; 85:S3-14.
92. Sultan A, Gaskell H, Derry S, Moore RA. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: Systematic review of randomised trials. BMC Neurol 2008; 8:1-9.
93. Lindsay TJ, Rodgers BC, Savath V, Hettinger KD. Treating diabetic peripheral neuropathic pain. Am Fam Physician 2010; 82:151-158.
94. Saarto T, Wiffen PJ. Antidepressants for neuropathic pain. Cochrane Database Syst Rev 2007;2007:CD005454-5524.
95. Boulton AJ. Management of diabetic peripheral neuropathy. Clin Diabetes 2005; 23:9-15.
96. Sansone RA, Sansone LA. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison. Innov Clin Neurosci 2014; 11:37-42.
97. Food U, Administration D. drugs@ FDA. http://www accessdata fda gov/scripts/cder/drugsatfda/ 2006.
98. Max MB, Kishore-Kumar R, Schafer SC, Meister B, Gracely RH, Smoller B, et al. Efficacy of desipramine in painful diabetic neuropathy: A placebo-controlled trial. Pain 1991; 45:3-9.
99. Quilici S, Chancellor J, Löthgren M, Simon D, Said G, Le TK, et al. Meta-analysis of duloxetine vs. pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol 2009; 9:1-14.
100. Kaur H, Hota D, Bhansali A, Dutta P, Bansal D, Chakrabarti A. A comparative evaluation of amitriptyline and duloxetine in painful diabetic neuropathy: A randomized, double-blind, cross-over clinical trial. Diabetes Care 2011; 34:818-822.
101. Zhang T-T, Xue R, Fan S-Y, Fan Q-Y, An L, Li J, et al. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation 2018; 15:176-188.
102. Allen R, Sharma U, Barlas S. Clinical experience with desvenlafaxine in treatment of pain associated with diabetic peripheral neuropathy. J Pain Res 2014; 7:339-351.
103. Li N, Li C, Han R, Wang Y, Yang M, Wang H, et al. LPM580098, a novel triple reuptake inhibitor of serotonin, noradrenaline, and dopamine, attenuates neuropathic pain. Front Pharmacol 2019; 10:53-68.
104. Ulugol A, Karadag HC, Tamer M, Firat Z, Aslantas A, Dokmeci I. Involvement of adenosine in the anti-allodynic effect of amitriptyline in streptozotocin-induced diabetic rats. Neurosci Lett 2002; 328:129-132.
105. Max MB, Lynch SA, Muir J, Shoaf SE, Smoller B, Dubner R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N Engl J Med 1992; 326:1250-1256.
106. Morello CM, Leckband SG, Stoner CP, Moorhouse DF, Sahagian GA. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 1999; 159:1931-1937.
107. Joss JD. Tricyclic antidepressant use in diabetic neuropathy. Ann Pharmacother 1999; 33:996-1000.
108. Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics: McGraw-Hill New York; 1996.
109. Price R, Smith D, Franklin G, Gronseth G, Pignone M, David WS, et al. Oral and topical treatment of painful diabetic polyneuropathy: Practice guideline update summary: Report of the AAN guideline subcommittee. Neurology 2022; 98:31-43.
110. Mihic SJ, Harris RA. GABA and the GABAA receptor. Alcohol Health Res World 1997; 21:127-131.
111. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: The calcium channel α2-δ (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007; 73:137-150.
112. Azmi S, ElHadd KT, Nelson A, Chapman A, Bowling FL, Perumbalath A, et al. Pregabalin in the Management of Painful Diabetic Neuropathy: A Narrative Review. Diabetes Ther 2019; 10:35-56.
113. Cai K, Nanga RP, Lamprou L, Schinstine C, Elliott M, Hariharan H, et al. The impact of gabapentin administration on brain GABA and glutamate concentrations: A 7T ¹H-MRS study. Neuropsychopharmacology 2012; 37:2764-2771.
114. Wiffen PJ, Derry S, Bell RF, Rice AS, Tölle TR, Phillips T, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2017; 6:Cd007938.
115. Chincholkar M. Gabapentinoids: Pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br J Pain 2020; 14:104-114.
116. Cui J-G, Linderoth B, Meyerson BA. Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. PAIN® 1996; 66:287-295.
117. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: A randomized controlled trial. JAMA 1998; 280:1831-1836.
118. Moore RA, Wiffen PJ, Derry S, Rice AS. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2011;3:CD007938.
119. Asrar MM, Kumari S, Sekhar BC, Bhansali A, Bansal D. Relative efficacy and safety of pharmacotherapeutic interventions for diabetic peripheral neuropathy: a systematic review and bayesian network meta-analysis. Pain Physician 2021; 24:E1-e14.
120. Rastogi A, Jude E. Novel treatment modalities for painful diabetic neuropathy. Diabetes Metab Syndr 2021;15:287-293.
121. Simmons Z, Feldman EL. The pharmacological treatment of painful diabetic neuropathy. Clin Diabetes 2000; 18:116-116.
122. Chang G, Chen L, Mao J. Opioid tolerance and hyperalgesia. Med Clin North Am 2007; 91:199-211.
123. Chou R, Fanciullo GJ, Fine PG, Adler JA, Ballantyne JC, Davies P, et al. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain 2009; 10:113-130.
124. Pathan H, Williams J. Basic opioid pharmacology: An update. Br J Pain 2012; 6:11-16.
125. Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy: A randomized controlled trial. Neurology 2003; 60:927-934.
126. Kahan M, Mailis-Gagnon A, Wilson L, Srivastava A. Canadian guideline for safe and effective use of opioids for chronic noncancer pain: clinical summary for family physicians. Part 1: General population. Can Fam Physician 2011; 57:1257-1266.
127. Machelska H, Celik MÖ. Advances in achieving opioid analgesia without side effects. Front Pharmacol 2018:9:1388-1409.
128. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 2005; 352:1324-1334.
129. Yadlapalli JSK, Dogra N, Walbaum AW, Prather PL, Crooks PA, Dobretsov M. Preclinical assessment of utility of M6S for multimodal acute and chronic pain treatment in diabetic neuropathy. Life Sci 2018; 192:151-159.
130. Hoy SM. Tapentadol Extended Release. Drugs 2012; 72:375-393.
131. Vadivelu N, Kai A, Maslin B, Kodumudi G, Legler A, Berger JM. Tapentadol extended release in the management of peripheral diabetic neuropathic pain. Ther Clin Risk Manag 2015; 11:95-105.
132. Harati Y, Gooch C, Swenson M, Edelman S, Greene D, Raskin P, et al. Maintenance of long-term effectiveness of tramadol in treatment of the pain in diabetic neuropathy. J Diabetes Complications 2000; 14:65-70.
133. Freeman R, Raskin P, Hewitt DJ, Vorsanger GJ, Jordan DM, Xiang J, et al. Randomized study of tramadol/acetaminophen versus placebo in painful diabetic peripheral neuropathy. Curr Med Res Opin 2007; 23:147-161.
134. Anwar M. Dextromethorphan. 2010. p. 321-324.
135.Weinbroum AA, Rudick V, Paret G, Ben-Abraham R. The role of dextromethorphan in pain control. Can J Anesth 2000; 47:585-596.
136. Ware MA, Fitzcharles MA, Joseph L, Shir Y. The effects of nabilone on sleep in fibromyalgia: Results of a randomized controlled trial. Anesth Analg 2010; 110:604-610.
137. Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat 2014; 2014:849623-849627.
138. Nirogi R, Jabaris SL, Jayarajan P, Abraham R, Shanmuganathan D, Rasheed MA, et al. Antinociceptive activity of α4β2* neuronal nicotinic receptor agonist A-366833 in experimental models of neuropathic and inflammatory pain. Eur J Pharmacol 2011; 668:155-162.
139. Westlake S, Jones M, Sharma KD, Xie JY. Letters to the editor: Nicotinic acetylcholine receptor ligands as potential targets for managing neuropathic pain induced by diabetic peripheral neuropathy. eNeurologicalSci 2022; 28:100416-100419.
140. Bernier LP, Ase AR, Séguéla P. P2X receptor channels in chronic pain pathways.  Br J Pharmacol 2018; 175:2219-2230.
141. Ursu D, Ebert P, Langron E, Ruble C, Munsie L, Zou W, et al. Gain and loss of function of P2X7 receptors: Mechanisms, pharmacology and relevance to diabetic neuropathic pain. Mol Pain 2014; 10:37-47.
142. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 2002; 99:17179-17184.
143. Krajewski JL. P2X3-containing receptors as targets for the treatment of chronic pain. Neurotherapeutics 2020; 17:826-838.
144. Rao S, Liu S, Zou L, Jia T, Zhao S, Wu B, et al. The effect of sinomenine in diabetic neuropathic pain mediated by the P2X(3) receptor in dorsal root ganglia. Purinergic Signal 2017; 13:227-235.
145. Jiang W, Fan W, Gao T. Analgesic mechanism of sinomenine against chronic pain. Pain Res Manag 2020; 2020:1876862-1876871.
146. Balogh M, Aguilar C, Nguyen NT, Shepherd AJ. Angiotensin receptors and neuropathic pain. Pain Rep 2021; 6:e869-881.
147. Keppel Hesselink JM, Schatman ME. EMA401: An old antagonist of the AT2R for a new indication in neuropathic pain. J Pain Res 2017; 10:439-443.
148. Rice A, Dworkin R, McCarthy T, Anand P, Bountra C, McCloud P, et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: A randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 2014; 383: 1637-1647.
149. Rice ASC, Dworkin RH, Finnerup NB, Attal N, Anand P, Freeman R, et al. Efficacy and safety of EMA401 in peripheral neuropathic pain: results of 2 randomised, double-blind, phase 2 studies in patients with postherpetic neuralgia and painful diabetic neuropathy. Pain 2021; 162:2578-2589.
150. Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20:975-983.
151. McDonnell A, Collins S, Ali Z, Iavarone L, Surujbally R, Kirby S, et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 2018; 159:1465-1476.
152. Bianchi R, Cervellini I, Porretta-Serapiglia C, Oggioni N, Burkey B, Ghezzi P, et al. Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J Pharmacol Exp Ther 2012; 340:64-72.
153. Jayaraj ND, Bhattacharyya BJ, Belmadani AA, Ren D, Rathwell CA, Hackelberg S, et al. Reducing CXCR4-mediated nociceptor hyperexcitability reverses painful diabetic neuropathy. J Clin Invest 2018; 128:2205-2225.
154. Nair AS. Tanezumab: Finally a monoclonal antibody for pain relief. Indian J Palliat Care 2018; 24:384-385.
155. Bramson C, Herrmann DN, Carey W, Keller D, Brown MT, West CR, et al. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. Pain Med 2015; 16:1163-1176.
156. Zha K, Yang Y, Tian G, Sun Z, Yang Z. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl Med 2021; 10:1008-1020.
157. Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold?  International Review of Neurobiology. 50: Academic Press; 2002. p. 393-413.
158. Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L. Nerve Growth Factor Signaling and Its Contribution to Pain. J Pain Res  2020; 13:1223-1241.
159. Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, et al. Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol 2015; 2:465-478.
160. Alam U, Sloan G, Tesfaye S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs 2020; 80:363-384.
161. Buksnys T, Armstrong N, Worthy G, Sabatschus I, Boesl I, Buchheister B, et al. Systematic review and network meta-analysis of the efficacy and safety of lidocaine 700 mg medicated plaster vs. pregabalin. Curr Med Res Opin 2020; 36:101-115.
162. Derry S, Rice AS, Cole P, Tan T, Moore RA. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2017; 1:Cd007393.
163. Rayman G, Baker NR, Krishnan ST. Glyceryl trinitrate patches as an alternative to isosorbide dinitrate spray in the treatment of chronic painful diabetic neuropathy. Diabetes Care 2003; 26:2697-2698.
164. Intiso D, Basciani M, Santamato A, Intiso M, Di Rienzo F. Botulinum toxin type A for the treatment of neuropathic pain in neuro-rehabilitation. Toxins (Basel) 2015; 7:2454-2480.
165. Gardner-Nix JS. Oral methadone for managing chronic nonmalignant pain. J Pain Symptom Manage 1996; 11:321-328.
166. De Conno F, Groff L, Brunelli C, Zecca E, Ventafridda V, Ripamonti C. Clinical experience with oral methadone administration in the treatment of pain in 196 advanced cancer patients. J Clin Oncol 1996; 14:2836-2842.
167. de Vos CC, Meier K, Zaalberg PB, Nijhuis HJ, Duyvendak W, Vesper J, et al. Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. PAIN® 2014; 155:2426-2431.
168. van Beek M, Geurts JW, Slangen R, Schaper NC, Faber CG, Joosten EA, et al. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: Five-year follow-up of a prospective two-center clinical trial. Diabetes Care 2018; 41:32-38.
169. Basson A, Olivier B, Ellis R, Coppieters M, Stewart A, Mudzi W. The effectiveness of neural mobilization for neuromusculoskeletal conditions: A systematic review and meta-analysis. J Orthop  Sports Phys Ther 2017; 47:593-615.
170. Zhu G-C, Tsai K-L, Chen Y-W, Hung C-H. Neural mobilization attenuates mechanical allodynia and decreases proinflammatory cytokine concentrations in rats with painful diabetic neuropathy. Phys Ther 2018; 98:214-222.
171. Ishibashi F, Tavakoli M. Impact of normoglycemia in reducing microvascular complications in patients with type 2 diabetes: A follow-up study. Front Endocrinol (Lausanne) 2018; 9:52-66.
172. Casadei G, Filippini M, Brognara L. Glycated hemoglobin (HbA1c) as a biomarker for diabetic foot peripheral neuropathy. Diseases 2021;9:16-33.
173. Albers JW, Herman WH, Pop-Busui R, Feldman EL, Martin CL, Cleary PA, et al. Effect of prior intensive insulin treatment during the diabetes control and complications trial (DCCT) on peripheral neuropathy in type 1 diabetes during the epidemiology of diabetes interventions and complications (EDIC) Study. Diabetes Care 2010; 33:1090-1096.
174. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010; 376:419-430.