Wnt5a deficiency in osteocalcin-expressing cells could not alleviate the osteoarthritic phenotype in a mouse model of post-traumatic osteoarthritis

Document Type : Original Article

Authors

1 Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P.R. China

2 School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China

3 Trauma department of the 982 Hospital of the joint service support force of the Chinese people’s Liberation Army, Tangshan, Hebei, P.R. China

4 Department of Stomatology, Kailuan General Hospital, Tangshan, China

5 Department of Orthopedic Surgery, Emergency General Hospital, Beijing, 100028, China

Abstract

Objective(s): Wnt5a, which regulates the activities of osteoblasts and osteoclasts, is reportedly overexpressed in osteoarthritis (OA) tissues. The purpose of this study was to elucidate its role in the development of OA by deleting Wnt5a in osteocalcin (OCN)-expressing cells.
Materials and Methods: Knee OA was induced by anterior cruciate ligament transection (ACLT) in OCN-Cre;Wnt5afl/fl knockout (Wnt5a-cKO) mice and control littermates. Eight weeks after surgery, histological changes, cell apoptosis, and matrix metabolism of cartilage were evaluated by toluidine blue, TUNEL staining, and im-immunohistochemistry analyses, respectively. In addition, the subchondral bone microarchitecture of mice was examined by micro-computed tomography (micro-CT).
Results: Histological scores show substantial cartilage degeneration occurred in ACLT knees, coupled with decreased collagen type II expression and enhanced matrix metalloproteinase 13 expression, as well as higher proportions of apoptotic cells. Micro-CT results show that ACLT resulted in decreased bone mineral density, bone volume/trabecular volume, trabecular number, and structure model index of subchondral bones in both Wnt5a-cKO and control littermates; although Wnt5a-cKO mice display lower BMD and BV/TV values, no significant difference was observed between Wnt5a-cKO and control mice for any of these values. 
Conclusion: Our findings indicate that Wnt5a deficiency in OCN-expressing cells could not prevent an osteoarthritic phenotype in a mouse model of post-traumatic OA.

Keywords

Main Subjects


1. Ajami S, Javaheri B, Chang YM, Maruthainar N, Khan T, Donaldson J, et al. Spatial links between subchondral bone architectural features and cartilage degeneration in osteoarthritic joints. Sci Rep 2022; 12:6694-6706.
2. Nakasone A, Guang Y, Wise A, Kim L, Babbin J, Rathod S, et al. Structural features of subchondral bone cysts and adjacent tissues in hip osteoarthritis. Osteoarthritis Cartilage 2022; 30:1130-1139.
3. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8:665-673.
4. Ziemian SN, Ayobami OO, Rooney AM, Kelly NH, Holyoak DT, Ross FP, et al. Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice. Bone 2021; 152:116071-116092.
5. Ibáñez L, Guillem-Llobat P, Marín M,Guillén MI. Connection between mesenchymal stem cells therapy and osteoclasts in osteoarthritis. Int J Mol Sci 2022; 23: 4693-4713.
6. Yan JY, Tian FM, Wang WY, Cheng Y, Song HP, Zhang YZ, et al. Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage 2014; 22:1869-1877.
7. Herrero-Beaumont G, Roman-Blas JA. Osteoarthritis: Osteoporotic OA: A reasonable target for bone-acting agents. Nat Rev Rheumatol 2013; 9:448-450.
8. Ziemian SN, Witkowski AM, Wright TM, Otero M, van der Meulen MCH. Early inhibition of subchondral bone remodeling slows load-induced posttraumatic osteoarthritis development in mice. J Bone Miner Res 2021; 36:2027-2038.
9. Hermann W, Lambova S, Muller-Ladner U. Current treatment options for osteoarthritis. Curr Rheumatol Rev 2018; 14:108-116.
10. Li Y, Xiao W, Sun M, Deng Z, Zeng C, Li H, et al. The Expression of osteopontin and Wnt5a in articular cartilage of patients with knee osteoarthritis and its correlation with disease severity. Biomed Res Int 2016; 2016:9561058-9561064.
11. Pashirzad M, Shafiee M, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Ryzhikov M, et al. Role of Wnt5a in the pathogenesis of inflammatory diseases. J Cell Physiol 2017; 232:1611-1616.
12. Wang Y, Fan X, Xing L,Tian F. Wnt signaling: A promising target for osteoarthritis therapy. Cell Commun Signal 2019; 17:97-110.
13. Martineau X, Abed É, Martel-Pelletier J, Pelletier JP, Lajeunesse D. Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts. PLoS One 2017; 12:e0180711-0180731.
14. Yang T, Zhang J, Cao Y, Zhang M, Jing L, Jiao K, et al. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J Dent Res 2015; 94:803-812.
15. Pullig O, Weseloh G, Ronneberger D, Käkönen S, Swoboda B. Chondrocyte differentiation in human osteoarthritis: Expression of osteocalcin in normal and osteoarthritic cartilage and bone.Calcif Tissue Int 2000; 67:230-240.
16. Chambers MG, Bayliss MT,Mason RM. Chondrocyte cytokine and growth factor expression in murine osteoarthritis.Osteoarthritis Cartilage 1997; 5:301-308.
17. Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP. Osteoarthritis in cynomolgus macaques. III: Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 1996; 11:1209-1217.
18. Iijima H, Aoyama T, Ito A, Yamaguchi S, Nagai M, Tajino J, et al. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis.Osteoarthritis Cartilage 2015; 23:1563-1574.
19. Lorenz J,Grässel S. Experimental osteoarthritis models in mice.Methods Mol Biol 2014; 1194:401-419.
20. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017; 23:775-781.
21. Xie J, Zhang D, Lin Y, Yuan Q, Zhou X. Anterior cruciate ligament transection-induced cellular and extracellular events in menisci: Implications for osteoarthritis. Am J Sports Med 2018; 46:1185-1198.
22. Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage homeostasis and osteoarthritis. Int J Mol Sci 2022; 23: 6316-6332.
23. Knurr KA, Kliethermes SA, Haack CR, Olson JS, Binkley NC, Scerpella TA, et al. Changes in bone mineral density of the femur and tibia before injury to 2 years after anterior cruciate ligament reconstruction in division I collegiate athletes. Am J Sports Med 2022; 50:2410-2416.
24. Reina N, Cavaignac E, Pailhé R, Pailliser A, Bonnevialle N, Swider P, et al. BMI-related microstructural changes in the tibial subchondral trabecular bone of patients with knee osteoarthritis. J Orthop Res 2017; 35:1653-1660.
25. Ziemian SN, Ayobami OO, Rooney AM, Kelly NH, Holyoak DT, Ross FP, et al. Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice. Bone 2021;152:116071-116092. 
26.Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, et al. Bone-cartilage interface crosstalk in osteoarthritis: Potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22:1077-1089.
27. Kobayashi Y, Uehara S, Udagawa N,Takahashi N. Regulation of bone metabolism by Wnt signals. J Biochem 2016; 159:387-392.
28. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018; 6:16-26.
29. Okamoto M, Udagawa N, Uehara S, Maeda K, Yamashita T, Nakamichi Y, et al. Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Sci Rep 2014; 4:4493-4500.
30. Hashimoto Y, Kobayashi M, Matsuzaki E, Higashi K, Takahashi-Yanaga F, Takano A, et al. Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells.Cell Biol Int 2016; 40:1129-1136.
31. Baschant U, Rauner M, Balaian E, Weidner H, Roetto A, Platzbecker U, et al. Wnt5a is a key target for the pro-osteogenic effects of iron chelation on osteoblast progenitors. Haematologica 2016; 101:1499-1507.
32. Maeda K, Takahashi N, Kobayashi Y. Roles of Wnt signals in bone resorption during physiological and pathological states. J Mol Med (Berl) 2013; 91:15-23.
33. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis.Nat Med 2012; 18:405-412.
34. Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 2012; 30:187-196.
35. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development.Dev Cell 2014; 29:340-349.
36. Liu Y, Strecker S, Wang L, Kronenberg MS, Wang W, Rowe DW, et al. Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One 2013; 8:e71318-71332.
37. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108:17-29.