Revitalizing polycystic ovary syndrome: The therapeutic impact of low-dose ∆9 tetrahydrocannabinol through reduction of oxidative stress and modulation of macrophage polarization

Document Type : Original Article

Authors

1 School of Biology, Damghan University, Damghan, Iran

2 Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran

3 Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran

Abstract

Objective(s): Polycystic ovary syndrome (PCOS) is a complex metabolic and endocrine disorder associated with chronic inflammation. However, the effect of ∆9 Tetrahydrocannabinol (THC) on PCOS has not been evaluated.  Therefore, this study aimed to investigate the immunomodulatory effects of THC in an animal model of PCOS. 
Materials and Methods: Twenty female Sprague-Dawley rats, aged 4 weeks, were divided into four groups. The control group received a normal diet, the sham group received a vehicle (carboxymethyl cellulose), the PCOS group received a high-fat diet (HFD) for 16 weeks followed by letrozole for 4 weeks, and the THC group received an HFD for 16 weeks followed by letrozole+THC (0.02 mg/kg) for 4 weeks. 
Results: The PCOS animals exhibited significantly higher levels of testosterone, insulin, triglycerides, and total cholesterol, along with elevated inflammatory and oxidative stress markers compared to the control group. Flow cytometry and real-time PCR analysis revealed an increase in M1 macrophage markers and a decrease in M2 macrophage markers compared to the control group. However, the administration of a low dose of THC mitigated these disturbances.
Conclusion: Low-dose THC improved inflammatory responses and shifted the balance of M1/M2 macrophage markers towards M2 macrophages in the animal model of PCOS.

Keywords

Main Subjects


1. Bruni V, Capozzi A, Lello S. The role of genetics, epigenetics and lifestyle in polycystic ovary syndrome development: The state of the art. Reprod Sci 2022;29:668-679.
2. Azziz R. Polycystic ovary syndrome. Obstet Gynecol 2018;132:321-336.
3. Spritzer PM, Lecke SB, Satler F, Morsch DM. Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 2015;149: 219-227.
4. Shapouri‐Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233:6425-6440.
5. Huang X, Li Y, Fu M, Xin H-B. Polarizing macrophages in vitro.  Methods Mol Biol 2018;1784:119-126.
6. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci-Landmrk 2008;13:453-461.
7. Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016;15:513-528.
8. Massi P, Vaccani A, Parolaro D. Cannabinoids, immune system and cytokine network. Curr Pharm Design 2006;12:3135-146.
9. Nichols JM, Kaplan BL. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res 2020;5:12-31.
10.    Walter L, Stella N. Cannabinoids and neuroinflammation. Brit J Pharmacol 2004;141:775-785.
11.    Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2‐arachidonoyl‐glycerol and arachidonoyl‐ethanolamide, and their metabolites. J Leukocyte Biol 2015;97:1049-1070.
12.    Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: a systematic review. Neurotoxicology 2019;74:282-298.
13.    Fiani B, Sarhadi KJ, Soula M, Zafar A, Quadri SA. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci 2020;41:3085-3098.
14.    Larsen C, Shahinas J. Dosage, efficacy and safety of cannabidiol administration in adults: a systematic review of human trials. J Clin Med Res 2020;12:129-141.
15.    Walker OS, Holloway AC, Raha S. The role of the endocannabinoid system in female reproductive tissues. J Ovarian Res 2019;12:3-3-12.
16.    Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR ligands: The future in treatment of polycystic ovary syndrome women with obesity and reduced fertility. Cells 2022;11:2073-4409
17.    Mirseyyed SF, Zavareh S, Nasiri M, Hashemi-Moghaddam H. An experimental study on the oxidative status and inflammatory levels of a rat model of polycystic ovary syndrome induced by letrozole and a new high-fat diet. Int J Fertil Steril 2023;18:45-53.
18.    Al-Ghezi ZZ, Busbee PB, Alghetaa H, Nagarkatti PS, Nagarkatti M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav Immun 2019;82:25-35.
19.    Bagheripour N, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR, editors. Changes in the expression of OCT4 in mouse ovary during estrous cycle. Vet Res Forum 2017;8:43-45
20.    Myers M, Britt KL, Wreford NGM, Ebling FJ, Kerr JB. Methods for quantifying follicular numbers within the mouse ovary. Reproduction 2004;127:569-580.
21.    Nasiri M, Saadat M, Karimi MH, Azarpira N, Saadat I. Evaluating mRNA expression levels of the TLR4/IRF5 signaling axis during hepatic ischemia-reperfusion injuries. Exp Clin Transplant 2019;17:648-652. 
22.    Hosseinzadeh E, Zavareh S, Lashkarbolouki T. Anti-oxidant properties of coenzyme Q10-pretreated mouse pre-antral follicles derived from vitrified ovaries. J Obstet Gynaecol Res 2017;43:140-148.
23.    Talebi A, Zavareh S, Kashani MH, Lashgarbluki T, Karimi I. The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. J Assist Reprod Gen. 2012;29:175-183.
24.    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.
25.    Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 2020;159:325-337.
26.    Manneras L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, et al. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 2007;148:3781-3791.
27.    Visser JA. The importance of metabolic dysfunction in polycystic ovary syndrome. Nat Rev Endocrinol 2021;17:77-78.
28.    Wang MX, Yin Q, Xu X. A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Med Sci Monit 2020;26:922136-922136
29.    Xu J, Dun J, Yang J, Zhang J, Lin Q, Huang M, et al. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways. Medical science monitor. Int J Clin Exp Med 2020;26:923073-923073.
30.    Avraham Y, Ben-Shushan D, Breuer A, Zolotarev O, Okon A, Fink N, et al. Very low doses of Δ8-THC increase food consumption and alter neurotransmitter levels following weight loss. Pharmacol Biochem Be 2004;77:675-684.
31.    Le Foll B, Trigo JM, Sharkey KA, Le Strat Y. Cannabis and Δ9-tetrahydrocannabinol (THC) for weight loss? Med Hypotheses 2013;80:564-567.
32.    Levendal R, Schumann D, Donath M, Frost C. Cannabis exposure associated with weight reduction and β-cell protection in an obese rat model. Phytomedicine 2012;19:575-582.
33.    Verty AN, Evetts MJ, Crouch GJ, McGregor IS, Stefanidis A, Oldfield BJ. The cannabinoid receptor agonist THC attenuates weight loss in a rodent model of activity-based anorexia. Neuropsychopharmacology 2011;36:1349-1358.
34.    Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, et al. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018;36:2013-2018.
35.    Assa-Glazer T, Gorelick J, Sela N, Nyska A, Bernstein N, Madar Z. Cannabis extracts affected metabolic syndrome parameters in mice fed high-fat/cholesterol diet. Cannabis Cannabinoid Res 2020;5:202-214.
36.    Rajavashisth TB, Shaheen M, Norris KC, Pan D, Sinha SK, Ortega J, et al. Decreased prevalence of diabetes in marijuana users: cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open 2012;2:876-881.
37.    Carrieri MP, Serfaty L, Vilotitch A, Winnock M, Poizot-Martin I, Loko M-A, et al. Cannabis use and reduced risk of insulin resistance in HIV-HCV infected patients: A longitudinal analysis (ANRS CO13 HEPAVIH). Clin Infect Dis 2015;61:40-48.
38.    Cao R, Wang J, Zhang W, Huang H, Qiao Y, Dai Y, et al. Is marijuana beneficial for prevention and treatment of diabetes? Am J Biomed Sci.2017;9:200-210.
39.    Kopustinskiene DM, Masteikova R, Lazauskas R, Bernatoniene J. Cannabis sativa L. Bioactive compounds and their protective role in oxidative stress and inflammation. Antioxidants 2022;11:660-660.
40.    Qi X, Zhang B, Zhao Y, Li R, Chang HM, Pang Y, et al. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression. Endocrinology 2017;158:1181-1193.
41.    Li Z, Peng A, Feng Y, Zhang X, Liu F, Chen C, et al. Detection of T lymphocyte subsets and related functional molecules in follicular fluid of patients with polycystic ovary syndrome. Sci Rep-Uk 2019;9:1-10.
42.    Lima PD, Nivet A-L, Wang Q, Chen Y-A, Leader A, Cheung A, et al. Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol Reprod 2018;99:838-852.
43.    Ahmed W, Katz S. Therapeutic use of cannabis in inflammatory bowel disease. Gastroenterol Hepatol 2016;12:668-668.
44.    Pan H, Huang W, Wang Z, Ren F, Luo L, Zhou J, et al. The ACE2-Ang-(1‑7)-Mas axis modulates M1/M2 macrophage polarization to relieve CLP-induced inflammation via TLR4-mediated NF-кb and MAPK pathways. J Inflamm Res 2021;14:2045-2060.