Neuroprotective roles of flavonoid “hispidulin” in the central nervous system: A review

Document Type : Review Article

Authors

1 Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University Dutse, PMB 7156, Jigawa State, Nigeria

2 Department of Human Physiology, Faculty of Basic Medical Sciences, Ahmadu Bello University (ABU), 810107, Zaria, Nigeria

3 Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University (ABU), 810107, Zaria, Nigeria

4 School of Health Sciences, Universiti Sains Malaysia, Kuban Kerian, Kelantan, Malaysia

5 Neucastle University Medicine Malaysia (NuMed), No. 1, Jalan Serjana 1, Kota ilmu, 79200 Iskandar Puteri (formerly Nusajaya) Johor-Malaysia

6 Department of Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University (ABU), 810107, Zaria, Nigeria

7 Department of Anatomy, Faculty of Medicine and Health Science, University Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia

10.22038/ijbms.2024.76605.16573

Abstract

Interest in naturally occurring phytochemicals has been on the increase, they are believed to reduce the risk of brain disorders. Hispidulin (HN) is a phenolic flavonoid compound with various pharmacological and biological effects on the central nervous system. It belongs to the flavone class of flavonoids. It can be found in different plant materials, especially fruits and vegetables. The literature used in this review was collected from credible scientific databases including ScienceDirect, Scopus, PubMed, Google Scholar, and Hindawi without time restriction, using relevant keywords, such as HN, brain, central nervous system, flavonoids, and flavones. HN was discovered to possess pro-apoptotic properties, act as an antioxidant, inhibit cytokine production and toll-like receptor 4 expression, as well as impede nuclear factor kappa beta and mitogen-activated protein kinase B. HN was also found to inhibit lipid peroxidation in vitro and reduce brain edema in mice. These pharmacological potentials suggest that HN is a promising candidate for neuroprotection in CNS disorders like depression and epilepsy. This review provides an update on the scientific literature concerning how these activities could help provide various forms of neuroprotection in the CNS. Additional experimental data on the effects of HN in models of neurological disorders and neuroprotection should be explored further. Based on the current study, HN is a promising candidate for neuroprotection of the CNS.

Keywords

Main Subjects


1. Moongkarndi P, Bunyapraphatsara N, Srisukh V, Wagne H. The inhibitory activity in 5-lipoxygenase pathway of Hispidulin from Millingtonia Hortensis Linn. J Sci Soc Thailand 1991; 17: 51-56. 
2. Diniz TC, Silva JC, Lima-Saraiva SRG, De Ribeiro FPRDA, Pacheco, AGM, De Freitas RM, et al. The role of flavonoids on oxidative stress in epilepsy. Oxid Med Cell Longev 2015:2015:171756-171764.
3. Kim K, Leem J. Hispidulin ameliorates endotoxin-induced acute kidney injury in mice. Molecules 2022;27:2019-2034. 
4. Kim HA, Lee J. Hispidulin modulates epithelial-mesenchymal transition in breast cancer cells. Oncology 2021; 21:155-163. 
5. Gao H, Xie J. Peng J, Han Y, Jiang Q, Han M, et al. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1alpha. Exp Cell Res 2015; 332: 236-246. 
6. Huang L, Huang K, Ning H. Autophagy induction by hispidulin provides protection against sevoflurane-induced neuronal apoptosis in aged rats. Biomed Pharmacother 2018; 98:460-468. 
7. Gao H, Gao MQ, Peng JJ, Han M, Liu KL, Han YT. Hispidulin mediates apoptosis in human renal cell carcinoma by inducing ceramide accumulation. Acta Pharmacol Sin 2017; 38:1618-1631. 
8. An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, et al. Hispidulin exhibits neuroprotective activities against cerebral ischemia-reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 2019; 232: 116599-116607. 
9. Dai Y, Sun X, Li B, Ma H, Wu P, Zhang Y, et al. The effect of hispidulin, a flavonoid from Salvia plebeia, on human nasopharyngeal carcinoma CNE-2Z cell proliferation, migration, invasion, and apoptosis. Molecules 2021; 26:1604-1614. 
10. Rodriguez JP, Lee J, Park JY, Kang KS, Hahm DH, Lee SC, et al. HPLC–UV analysis of sample preparation influence on flavonoid yield from Cirsium japonicum var. maackii. Appl Biol Chem 2017; 60:519-525. 
11. Lee D, Kwak HJ, Kim BH, Kim SH, Kim DW, Kang KS. Combined anti-adipogenic effects of hispidulin and p-synephrine on 3T3-L1 adipocytes. Biomolecules 2021; 11:1764-1784. 
12. Kim N, Lee S, Kang J, Choi YA, Lee B, Kwon, TK, et al. Hispidulin alleviates imiquimod-induced psoriasis-like skin inflammation by inhibiting splenic Th1/Th17 cell population and keratinocyte activation. Int Immunopharmacol 2020; 87: 106767. 
13. Wang Y, Xie Z, Jiang N, Wu Z, Xue R, Dong B, et al. Hispidulin attenuates cardiac hypertrophy by improving mitochondrial dysfunction. Front Cardiovasc Med 2020; 7: 1–17. 
14. Lin TY, Lu CW, Wang SJ, Huang SK. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats. Eur J Clin Pharmacol 2015; 755: 6-15. 
15. Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, et al. Flavonoids-natural gifts to promote health and longevity. Int J Mol Sci 2022; 23: 2176-2192. 
16. Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications. Oxid Med Cell Longev 2021:2021:6687386-6687430. 
17. Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015; 6: 64-72. 
18. Jung UJ, Kim SR. Beneficial effects of flavonoids against parkinson’s disease. J Med Food 2018; 21: 421-432. 
19. Angelopoulou E, Pyrgelis ES, Piperi C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132:104612. 
20. Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017;8:423-435. 
21. Gomes A, Fernandes E, Lima J, Mira L, Corvo M. Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr Med Chem 2008; 1:1586-1605. 
22. Nabavi SF, Khan H, D’onofrio G, Šamec D, Shirooie S, Dehpour AR, et al. Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128: 359-365. 
23. Ngwoke KG, Ezenkwu C, Ajaghaku DL, Proksch P. Vitexin with its derivatives is responsible for the cholinomimetic properties of Penianthus longifolius extract which stimulates muscarinic receptors. J Nat Prod 2017; 7: 231–236. 
24. Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, et al. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018; 48:457–471.
25. Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng, J, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci 2020; 14:1-12. 
26. Vauzour, D. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J Sci Food Agric 2014; 94:1042-1056. 
27. Kim J, Wie M, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat Cell Biol 2019; 52: 369-377. 
28. National Center for Biotechnology Information. PubChem Compound Summary for CID 5281628, Hispidulin. 2022. Retrieved June 5, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound / Hispidulin.
29. Gökbulut A. Determination of hispidulin in the flowers of Inula viscosa (L.) aiton using HPLC and HPTLC methods. Turk J Pharm Sci 2016; 13: 159-166.
30. Ren X, Wang W, Bao Y, Zhu Y, Zhang Y, Lu Y, et al.  Isorhamnetin and hispidulin from tamarix ramosissima inhibit 2-amino-1-methyl-6-phenylimidazo[4,5-b] Pyridine (PhIP) formation by trapping phenylacetaldehyde as a key mechanism. Foods 2020; 9: 1-15. 
31. Kavvadias D, Sand P, Youdim K, Qaiser MZ, Rice-Evans C, Baur R, et al. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 2004; 142: 811-820.
32. Lin FJ, Yen FL, Chen PC, Wang MC, Lin CN, Lee CW, et al. HPLC-fingerprints and antioxidant constituents of Phyla nodiflora. ScientificWorldJournal 2014:2014:528653-528660.
33. Mourad A, Soumia M, Ismail B, Mohamed B, Mohamed E. Phytocompounds from Anvillea radiata as promising anti-Covid-19 drugs: In silico studies and in vivo safety assessment. J Environ Sci Health 2021; 56:1512-1523.
34. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013:2013:162750-162765. 
35. Sekaran, S, Roy A, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355: 109831.
36. Atip M, Ali A, Maalik A, Farooq U. Pharmacological assessment of hispidulin - A natural bioactive flavone. Acta Pol Pharm 2015; 72: 829-842.
37. Mehta P, Dhapte V. A Comprehensive review on pharmacokinetic profile of some traditional chinese medicines. New J Sci 2016; 10: 1-31. 
38. Thitilertdecha P, Pluangnooch P, Timalsena S, Soontrapa K. Immunosuppressive effect of hispidulin in allergic contact dermatitis. BMC Complement Altern Med 2019; 19:268-274.
39. Huang L, Huang K, Ning H. Hispidulin prevents sevoflurane - Induced memory dysfunction in aged rats. Biomed Pharmacother 2018; 97: 412-422. 
40. Chen Y, Sun J, Zhang Z, Liu X, Wang Q, Yu Y. The potential effects and mechanisms of hispidulin in the treatment of diabetic retinopathy based on network pharmacology. BMC Complement Med Ther 2022; 22: 141-152. 
41. Yu CY, Su KY, Lee PL, Jhan JY, Tsao PH, Chan DC, et al. Potential therapeutic role of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling. Evid Based Complement Altern Med 2013:2013:518301-518312. 
42. Bouvier DS, Fixermer s., Heurtaux T, Jeannelle F, Frauenknecht K B M, Mittelbronn M. The multifaceted neurotoxicity of astrocytes in ageing and age-related neurodegenerative diseases: A transltional perspective. Front Physiol 2022; 13: 1-23.
43. Chen Z, Zhu G, Sheng C, Lei J, Song S, Zhu J. Hispidulin enhances temozolomide (TMZ)-induced cytotoxicity against malignant glioma cells in vitro by inhibiting autophagy. Comput Intell Neurosci 2022;2022:5266770-5266776.
44. Yu C, Cheng C, Kang YF, Chang PC, Lin IP, Kuo YH, et al. Hispidulin inhibits neuroinflammation in lipopolysaccharide-activated BV2 microglia and attenuates the activation of Akt, NF-κB, and STAT3 pathway. Neurotox Res 2020; 38:163-174.
45. Woo SM, Seo SU, Kim SH, Nam JO, Kim S, Park JW, et al. Hispidulin enhances TRAIL-mediated apoptosis via CaMKKβ/AMPK/USP51 axis-mediated bim stabilization. Cancers (Basel) 2019; 11:1960-1975. 
46. Kang J, Kim SH. Hispidulin attenuates atopic dermatitis-like skin inflammation features in mice. FASEB J 2019; 33: lb48-lb48. 
47. Borsini A, Zunszain PA. Depression as a neuroinflammatory condition. Immunopsychiatry 2018; 12: 197-210. 
48. Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J Tradit Complement Med 2016; 7: 360-366.
49. Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012; 27: 477-481. 
50. Hinton T, Johnston, GAR. GABA, The Major Inhibitory Neurotransmitter in the Brain. In Reference Module in Biomedical Sciences (2nd ed.). Elsevier Inc. 2018.
51. Hinton T, Hanrahan JR, Johnston GA. Flavonoid Actions on Receptors for the Inhibitory Neurotransmitter GABA. In (Ed.), Flavonoids - From Biosynthesis to Human Health. Intech 2017.
52. Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted vagus nerve stimulation for rehabilitation after stroke. Front Neurosci 2019; 13:1-18.
53. Zhou Y, Zhang S, Fan X. Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. Oxid Med Cell Longev 2021; 2021: 5471347-5471364.
54. Tao T, Liu M, Chen M, Luo Y, Wang C, Xu TY, et al. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216: 107695-107718.
55. An P, Wu T, Yu H, Fang K, Ren Z, Tang, M. Hispidulin protects against focal cerebral ischemia reperfusion injury in rats. J Mol Neurosci 2018; 65: 203-212. 
56. Lopresti AL. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs R D 2017; 17: 53-64. 
57. Walesiuk A, Nazaruk J, Braszko JJ. Pro-cognitive effects of Cirsium rivulare extracts in rats. J Ethnopharmacol 2010; 129: 261-266. 
58. Jia S, Hou Y, Wang D, Zhao X. Flavonoids for depression and anxiety: A systematic review and meta-analysis. Crit Rev Food Sci 2023;63:8839-8849. 
59. Zhang LM, Yao JZ, Li Y, Li K, Chen HX, Zhang Y Z, et al. Anxiolytic effects of flavonoids in animal models of posttraumatic stress disorder. Evid Based Complement Altern Med 2012:2012:623753-623762. 
60. Abdelhalim A, Khan I, Karim N. The contribution of ionotropic GABAergic and NmethylDAspartic acid receptors in the antidepressantlike effects of hispidulin. Pharmacogn Mag 2019; 15: 62-70.
61. Hritcu L, Ionita R, Postu PA, Gupta GK, Turkez H, Lima TC, et al. Antidepressant flavonoids and their relationship with oxidative stress. Oxid Med Cell Longev 2017:2017:5762172-5762189. 
62. Liao Y, Lee H, Huang W, Fan P, Chiou L. Hispidulin alleviated methamphetamine-induced hyperlocomotion by acting at α6 subunit-containing GABAA receptors in the cerebellum. Psychopharmacol 2016; 4365; 13-16. 
63. Moshiri M, Roohbakhsh A, Talebi M, Iranshahy M, Etemad L. Role of natural products in mitigation of toxic effects of methamphetamine: A review of based on in vitro and in vivo studies. Avicenna J Phytomed 2020; 10: 334-351.
64. Wasowski C, Marder M. Flavonoids as GABAA receptor ligands: The whole story? J Exp Pharmacol 2012; 4: 9-24. 
65. Altun H, Şahin N, Kurutaşc EB, Karaaslana U, Sevgena FH, Fındıkl E. Assessment of malondialdehyde levels, superoxide dismutase, and catalase activity in children with autism spectrum disorders. Psychiatry Clin. Psychopharmacol 2018; 28:408-415. 
66. Chaiprasongsuk A, Lohakul J, Soontrapa K, Sampattavanich S, Akarasereenont P, Panich U. Activation of Nrf2 reduces UVA-Mediated MMP-1 upregulation viaMAPK/AP-1 signaling cascades: The photoprotective effects of sulforaphane and hispidulin. J Pharmacol Exp Ther 2017; 360: 388-398. 
67. Mas-Bargues C, Escrivá C, Dromant M, Borrás, C, Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys 2021; 709: 108941. 
68. Jee SC, Kim M, Kim KS, Kim HS, Sung JS. Protective effects of myricetin on benzo[a]pyrene-induced 8-hydroxy-2?-deoxyguanosine and BPDE-DNA adduct. Antioxidants 2020; 9:446-458.
69. Kim JY, Choi Y, Leem J, Song JE. Heme oxygenase-1 induction by cobalt protoporphyrin ameliorates cholestatic liver disease in a xenobiotic-induced murine model. Int J Mol Sci 2021; 22: 8253-8266. 
70. Li J, Zhang X, Yu Q, Fu X, Wang W. One-step separation of four flavonoids from Herba salviae Plbeiae by HSCCC. J Chromatogr Sci 2014; 52: 1288-1293.
71. Kut K, Bartosz G, Soszyński M, Izabela S. Antioxidant properties of hispidulin. Nat Prod Res 2022; 24; 1-4. 
72. Kheiry M, Dianat M, Badavi M, Mard SA, Bayati V. p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress. Iran J Basic Med Sci 2019; 22: 949-955.
73. Felger JC. Role of inflammation in depression and treatment implications. Handb Exp Pharmacol 2019; 250: 255-286. 
74. Kim Y, Lee H, Park HJ, Kim MK, Kim YI, Kim HJ, et al. Hispidulin Inhibits the Vascular Inflammation Triggered by Porphyromonas gingivalis Lipopolysaccharide. Molecules 2023; 28: 6717-6729.
75. Li X, Gu Y, Ren L, Cai Q, Qiu Y, He J, et al. Study of hispidulin in the treatment of uric acid nephropathy based on NF-κB signaling pathway. Chem Biol Drug Des 2024; 103:e14367.
76. Harman BC, Riemersma-Van der Lek RF, Burger H, Netkova M, Drexhage RC, Bootsman F, et al. Relationship between clinical features and inflammation- related monocyte gene expression in bipolar disorder- towards a better understanding of psychoimmunological interactions. Bipolar Disord 2014; 16:137- 150. 
77. Zhu H, Liang Q, Xiong X, Wang Y, Zhang Z, Sun M, et al. Anti-inflammatory effects of p-Coumaric acid, a natural compound of oldenlandia diffusa, on arthritis model rats. Evid Based Complement Altern Med 2018: 2018: 5198594-5198602.
78. Ng A, Tam WW, Hang, MW, Ho CS, Husain SF, McIntyre RS, et al. IL 1β, IL-6, TNF- α and CRP in elderly patients with depression or alzheimer’s disease: Systematic review and meta-analysis. Sci Rep 2018; 8: 12050-12061.