1. Steijvers E, Ghei A, Xia Z. Manufacturing artificial bone allografts: a perspective. Biomater Transl 2022; 3:65-80.
2. Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury 2021; 52:18-22.
3. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019; 23:9-16.
4. Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW. Synthetic and bone tissue engineering graft substitutes: What is the future? Injury 2021; 52:72-77.
5. Lim KT, Patel DK, Dutta SD, Choung HW, Jin H, Bhattacharjee A, et al. Human teeth-derived bioceramics for improved bone regeneration. Nanomaterials (Basel) 2020; 10:2396-2412.
6. Kaneko S, Yamamoto Y, Wada K, Kumagai G, Harada Y, Yamauchi R, et al. Ultraviolet irradiation improves the hydrophilicity and osteo-conduction of hydroxyapatite. J Orthop Surg Res 2020; 15:425-433.
7. Liao J, Li Y, Li H, Liu J, Xie Y, Wang J, et al. Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material. J Appl Biomater Func 2018; 16: 28-35.
8. Lowe B, Venkatesan J, Anil S, Shim MS, Kim SK. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 2016; 93:1479-1487.
9. Liang T, Wu J, Li F, Huang Z, Pi Y, Miao G, et al. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. J Biomed Mater Res A 2021; 109:219-231.
10. Chatzipetros E, Damaskos S, Tosios KI, Christopoulos P, Donta C, Kalogirou EM, et al. The effect of nano-hydroxyapatite/chitosan scaffolds on rat calvarial defects for bone regeneration. Int J Implant Dent 2021; 7:40-51.
11. Soriente A, Fasolino I, Gomez-Sanchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G, et al. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res A 2022; 110:266-272.
12. Niu Y, Chen L, Wu T. Recent advances in bioengineering bone revascularization based on composite materials comprising hydroxyapatite. Int J Mol Sci 2023; 24:12492-12515.
13. Chircov C, Miclea II, Grumezescu V, Grumezescu AM. Essential oils for bone repair and regeneration-mechanisms and applications. Materials 2021; 14:1867-1887.
14. Anada T, Pan CC, Stahl AM, Mori S, Fukuda J, Suzuki O, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci 2019; 20:1096-1107.
15. Dong C, Tan G, Zhang G, Lin W, Wang G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: a review. Front Bioeng Biotech 2023; 11:1-14.
16. Gotz W, Reichert C, Canullo L, Jager A, Heinemann F. Coupling of osteogenesis and angiogenesis in bone substitute healing - a brief overview. Ann Anat 2012; 194:171-173.
17. Shi Z, Yang F, Pang Q, Hu Y, Wu H, Yu X, et al. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol 2023; 224:533-543.
18. Maghsoudlou MA, Nassireslami E, Saber-Samandari S, Khandan A. Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna J Med Biotechnol 2020; 12:68-76.
19. Foroutan S, Hashemian M, Khosravi M, Nejad MG, Asefnejad A, Saber-Samandari S, et al. A porous sodium alginate-CaSiO3 polymer reinforced with graphene nanosheet: Fabrication and optimality analysis. Fiber Polym 2021; 22:540-549.
20. Bagherifard A, Yekta HJ, Aghdam HA, Motififard M, Sanatizadeh E, Nejad MG, et al. Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Biol Eng Comput 2020; 58:1681-1693.
21. Khalaf AT, Wei Y, Wan J, Zhu J, Peng Y, Abdul KS, et al. Bone tissue engineering through 3D bioprinting of bioceramic scaffolds: a review and update. Life (Basel) 2022; 12:903-931.
22. Zheng BD, Yu YZ, Yuan XL, Chen XS, Yang YC, Zhang N, et al. Sodium alginate/carboxymethyl starch/kappa-carrageenan enteric soft capsule: processing, characterization, and rupture time evaluation. Int J Biol Macromol 2023; 244:125427.
23. Devi GVY, Nagendra AH, Shenoy PS, Chatterjee K, Venkatesan J. Fucoidan-incorporated composite scaffold stimulates osteogenic differentiation of mesenchymal stem cells for bone tissue engineering. Mar Drugs 2022; 20:589-611.
24. Li M, Bai Y, Pan X, Wang J, Chen W, Luio J, et al. Study on the correlation between the content of bone morphogenetic protein 2 in demineralized bone matrix and its osteogenic activity in vitro and in vivo. Zhongguo xiu fu chong jian wai ke za zhi 2021; 35:620-626.
25. Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 2021; 19:620-626.
26. He Y, Tian Y, Zhang W, Wang X, Yang X, Li B, et al. Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. Int J Biol Macromol 2022; 202:55-67.
27. Pravdyuk AI, Petrenko YA, Fuller BJ, Petrenko AY. Cryopreservation of alginate encapsulated mesenchymal stromal cells. Cryobiology 2013; 66:215-222.
28. Park JH, Lee EJ, Knowles JC, Kim HW. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration. J Biomater Appl 2014; 28:1079-1084.
29. Yi M, Nie Y, Zhang C, Shen B. Application of mesoporous silica nanoparticle-chitosan-loaded BMP-2 in the repair of bone defect in chronic osteomyelitis. J Immunol Res 2022; 2022:1-11.
30. Luo Y, Lode A, Wu C, Chang J, Gelinsky M. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Inter 2015; 7:6541-6549.
31. Chae T, Yang H, Leung V, Ko F, Troczynski T. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med 2013; 24:1885-1894.
32. Yu H, Cauchois G, Louvet N, Chen Y, Rahouadj R, Huselstein C. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties. Bio Med Mater Eng 2017; 28:193-200.
33. Ding C, Teng S, Pan H. In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application. Mater Lett 2012; 79:72-74.
34. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005; 26:3919-3928.
35. Vasilyev AV, Kuznetsova VS, Bukharova TB, Grigoriev TE, Zagoskin YD, Nedorubova IA, et al. Influence of the degree of deacetylation of chitosan and BMP-2 concentration on biocompatibility and osteogenic properties of BMP-2/PLA granule-loaded chitosan/beta-glycerophosphate hydrogels. Molecules 2021; 26:261-283.
36. Wu X, Stroll SI, Lantigua D, Suvarnapathaki S, Camci-Unal G. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci 2019; 7:2675-2685.
37. Muzzarelli RAA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli M, et al. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 1994; 15:1075-1081.
38. Ressler A. Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers (Basel) 2022; 14:3430-1448.