Protective effect of 1, 8-cineole (eucalyptol) against lead-induced liver injury by ameliorating oxidative stress and inflammation and modulating TLR4/MyD88/NF-κB signaling

Document Type : Original Article

Authors

1 Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

2 Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abstract

Objective(s): This study was conducted to explore the impact of 1, 8-cineole (eucalyptol) on the biochemical, molecular, and histological changes caused by lead acetate in the liver of adult male Wistar rats. The research also investigated the potential involvement of the TLR4 signaling pathway in this effect. 
Materials and Methods: Rats were orally administered lead acetate (25 mg/kg-day) for 14 consecutive days and received 1, 8-cineole (100 mg/kg-day) during the same period. 
Results: 1, 8-cineole prevented an increase in the malondialdehyde level, a decrease in the glutathione level, and a decrease in the activity of superoxide dismutase and glutathione peroxidase enzymes in the liver of rats treated with lead acetate. This monoterpene also prevented an increase in the expression of pro-inflammatory cytokines and significantly reduced the infiltration of inflammatory cells in the liver parenchyma. Additionally, 1, 8-cineole discouraged the increase in toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa B (NF-κB) expression in the liver and stopped a rise in serum AST and ALT enzymes. 
Conclusion: 1, 8-cineole can prevent liver damage caused by lead acetate by reducing oxidative stress and inflammation. This hepatoprotection is probably achieved by inhibiting TLR4/MyD88/NF-κB signaling.

Keywords

Main Subjects


1. Assi MA, Hezmee MN, Sabri MY, Rajion MA. The detrimental effects of lead on human and animal health. Vet World 2016; 9: 660-671.
2. Karrari P, Mehrpour O, Abdollahi M. A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures. DARU J Pharm Sci 2012; 20: 2-18. 
3. Takano T, Okutomi Y, Mochizuki M, Ochiai Y, Yamada F, Mori M, et al. Biological index of environmental lead pollution: Accumulation of lead in liver and kidney in mice. Environ Monit Assess 2015; 187: 744. 
4. Mudipalli A. Lead hepatotoxicity & potential health effects. Indian J Med Res 2007; 126: 518-527.e
5. Matović V, Buha A, Ðukić-Ćosić D, Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 2015; 78: 130-140. 
6. Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. Environ Sci Pollut Res Int 2022; 29: 21998-2011.
7. Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci 2018; 19: 1813. 
8. Abdel-Emam RA, Ali MF. Effect of L-carnitine supplementation on lead acetate-induced liver cell apoptosis and inflammation: Role of caspase-3 and glycogen synthase kinase-3β enzymes. Life Sci 2022; 291: 120277. 
9. Lakka N, Pai B, Mani MS, Dsouza HS. Potential diagnostic biomarkers for lead-induced hepatotoxicity and the role of synthetic chelators and bioactive compounds. Toxicol Res 2023; 12: 178-188. 
10. Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, et al. 1, 8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167: 115467. 
11. De Vincenzi M, Silano M, De Vincenzi A, Maialetti F, Scazzocchio B. Constituents of aromatic plants: Eucalyptol. Fitoterapia 2002; 73: 269-275. 
12. Galan DM, Ezeudu NE, Garcia J, Geronimo CA, Berry NM, Malcolm BJ. Eucalyptol (1, 8-cineole): an underutilized ally in respiratory disorders?. J Essent Oil Res 2020; 32: 103-110. 
13. Wang Y, Zhen D, Fu D, Fu Y, Zhang X, Gong G, et al. 1, 8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway. Phytomedicine 2021; 91: 153672. 
14. An F, Bai Y, Xuan X, Bian M, Zhang G, Wei C. 1, 8-Cineole ameliorates advanced glycation end products-induced Alzheimer’s disease-like pathology in vitro and in vivo. Molecules 2022; 27: 3913. 
15. Mahdavifard S, Nakhjavani M. 1, 8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord 2022; 21: 567-572. 
16. Cai ZM, Peng JQ, Chen Y, Tao L, Zhang YY, Fu LY, et al. 1, 8-Cineole: A review of source, biological activities, and application. J Asian Nat Prod Res 2021; 23: 938-954. 
17. Tang YL, Zhu L, Tao Y, Lu W, Cheng H. Role of targeting TLR4 signaling axis in liver-related diseases. Pathol Res Pract 2023; 244:154410. 
18. Meng C, Zeng W, Lv J, Wang Y, Gao M, Chang R, et al. 1, 8-cineole ameliorates ischaemic brain damage via TRPC6/CREB pathways in rats. J Pharm Pharmacol 2021; 73: 979-985. 
19. Asiwe JN, Yovwin GD, Ekene NE, Ovuakporaye SI, Nnamudi AC, Nwangwa EK. Ginkgo biloba modulates ET-I/NO signalling in Lead Acetate induced rat model of endothelial dysfunction: Involvement of oxido-inflammatory mediators. Int J Environ Health Res. 2024; 34: 979-990. 
20. ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, et al. Effect of empagliflozin on thioacetamide-induced liver injury in rats: role of AMPK/SIRT-1/HIF-1α pathway in halting liver fibrosis. Antioxidants 2022; 11: 2152. 
21. Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275. 
22. Jollow DJ, Mitchell JR, Zampaglione NA, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974; 11:151-169. 
23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402-408. 
24. Asle-Rousta M, Amini R, Aghazadeh S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch Physiol Biochem 2023; 129: 597-602. 
25. Abdel Fattah ME, Sobhy HM, Reda A, Abdelrazek HM. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environ Sci Pollut Res 2020; 27: 43028-43043. 
26. Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H. Anti-oxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol ind Health 2011; 27: 447-453. 
27. Porres-Martínez M, González-Burgos E, Carretero ME, Gómez-Serranillos MP. Major selected monoterpenes α-pinene and 1, 8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm Biol 2015; 53: 921-929. 
28. Wang Y, Zhang X, Fu Y, Fu D, Zhen D, Xing A, et al. 1, 8-cineole protects against ISO-induced heart failure by inhibiting oxidative stress and ER stress in vitro and in vivo. Eur J Pharm 2021; 910: 174472. 
29. Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20: 8082-8091. 
30. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and anti-oxidants in liver diseases. Int J Mol Sci 2015; 16: 26087-26124. 
31. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem 2014; 395: 203-230. 
32. Li W, Yang GL, Zhu Q, Zhong XH, Nie YC, Li XH, et al. TLR4 promotes liver inflammation by activating the JNK pathway. Eur Rev Med Pharmacol Sci 2019; 23: 7655-7662. 
33. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 112681. 
34. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, et al. Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function. Immunity 1998; 9: 143-150. 
35. Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. Biology 2023; 12: 776-793. 
36. Linghu K, Lin D, Yang H, Xu Y, Zhang Y, Tao L, et al. Ameliorating effects of 1, 8-cineole on LPS-induced human umbilical vein endothelial cell injury by suppressing NF-κB signaling in vitro. Eur J Pharmacol 2016; 789: 195-201. 
37. Linghu KG, Wu GP, Fu LY, Yang H, Li HZ, Chen Y, et al. 1, 8-Cineole ameliorates LPS-induced vascular endothelium dysfunction in mice via PPAR-γ dependent regulation of NF-κB. Front Pharmacol 2019; 10: 178-188. 
38. Lee HS, Park DE, Song WJ, Park HW, Kang HR, Cho SH, et al. Effect of 1.8-cineole in dermatophagoides pteronyssinus-stimulated bronchial epithelial cells and mouse model of asthma. Biol Pharm Bull 2016; 39: 946-952. 
39. Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol 2018; 7: 81-86. 
40. Ramadori G, Moriconi F, Malik I, Dudas J. Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol pharmacol 2008; 59: 107-117.
41. Li Y, Xu YL, Lai YN, Liao SH, Liu N, Xu PP. Intranasal co-administration of 1, 8-cineole with influenza vaccine provide cross-protection against influenza virus infection. Phytomedicine 2017; 34: 127-135. 
42. McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 2016; 15: 817-828. 
43. Santos FA, Silva RM, Tomé AR, Rao VS, Pompeu MM, Teixeira MJ, et al. cak protects against liver failure in an in‐vivo murine model of endotoxemic shock. J Pharm Pharmacol 2001; 53: 505-511. 
44. Kim NH, Hyun SH, Jin CH, Lee SK, Lee DW, Jeon TW, et al. Pretreatment with 1, 8-cineole potentiates thioacetamide-lnduced hepatotoxicity and immunosuppression. Arch Pharm Res 2004; 27: 781-789. 
45. Akcakavak G, Kazak F, Yilmaz Deveci MZ. Eucalyptol Protects against Cisplatin-Induced Liver Injury in Rats. Biol Bull Russ Acad Sci 2023; 50: 987-994.