MicroRNA miR-188-5p enhances SUMO2/3 conjugation by targeting SENP3 and alleviates focal cerebral ischemia/reperfusion injury in rats

Document Type : Original Article

Authors

1 Department of Anesthesiology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China

2 Department of Anesthesiology, Qingdao Eight People’s Hospital, Qingdao, Shandong, China

3 Graduate School of Dalian Medical University, Dalian, Liaoning, China

10.22038/ijbms.2024.76165.16485

Abstract

Objective(s): Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury.
Materials and Methods: Focal cerebral I/R was established in Sprague–Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area.
Results: In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor.
Conclusion: MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.

Keywords

Main Subjects


1. Xie W, Zhou P, Sun Y, Meng X, Dai Z, Sun G, et al. Protective effects and target network analysis of ginsenoside rg1 in cerebral ischemia and reperfusion injury: A comprehensive overview of experimental studies. Cells 2018;7:270-287.
2. Wang YJ, Li ZX, Gu HQ, Zhai Y, Jiang Y, Zhao XQ, et al. China stroke statistics 2019: A report from the national center for healthcare quality management in neurological diseases, china national clinical research center for neurological diseases, the chinese stroke association, national center for chronic and non-communicable disease control and prevention, chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations. Stroke Vasc Neurol 2020; 5:211-239.
3. Cuartero MI, de la Parra J, García-Culebras A, Ballesteros I, Lizasoain I, Moro M. The kynurenine pathway in the acute and chronic phases of cerebral ischemia. Curr Pharm Des 2016; 22:1060-1073.
4. Liu K, Li L, Liu Z, Li G, Wu Y, Jiang X, et al. Acute administration of metformin protects against neuronal apoptosis induced by cerebral ischemia-reperfusion injury via regulation of the AMPK/CREB/BDNF pathway. Front Pharmacol 2022; 13:832611-832626.
5. Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res 2017; 120:541-558.
6. Song L, Mu L, Wang H. MicroRNA-489-3p aggravates neuronal apoptosis and oxidative stress after cerebral ischemia-reperfusion injury. Bioengineered 2022; 13:14047-14056.
7. Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis. Can J Cardiol 2017; 33:313-324.
8. Di M, Zhang Y, Zeng R, Liu X, Chen W, Zhang M, et al. The pro-angiogenesis effect of miR33a-5p/Ets-1/DKK1 signaling in ox-LDL induced HUVECs. Int J Biol Sci 2021; 17:4122-4139.
9. Shi F, Dong Z, Li H, Liu X, Liu H, Dong R. MicroRNA-137 protects neurons against ischemia/reperfusion injury through regulation of the Notch signaling pathway. Exp Cell Res 2017; 352:1-8.
10. Wang N, Zhang L, Lu Y, Zhang M, Zhang Z, Wang K, et al. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway. Biomed Pharmacother 2017; 89:1187-1195.
11. Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res 2016; 41:2627-2635.
12. Li L, Cui P, Ge H, Shi Y, Wu X, Fan Ru Z. miR-188-5p inhibits apoptosis of neuronal cells during oxygen-glucose deprivation (OGD)-induced stroke by suppressing PTEN. Exp Mol Pathol 2020; 116:104512.
13. Gusar VA, Timofeeva AV, Zhanin IS, Shram SI, Pinelis VG. Estimation of time-dependent microrna expression patterns in brain tissue, leukocytes, and blood plasma of rats under photochemically induced focal cerebral ischemia. Mol Biol (Mosk) 2017; 51:683-695.
14. Chang HM, Yeh ETH. SUMO: From bench to bedside. Physiol Rev 2020; 100:1599-1619.
15. Eifler K, Vertegaal AC. Mapping the SUMOylated landscape. FEBS J 2015; 282:3669-3680.
16. Ovaa H, Vertegaal ACO. Probing ubiquitin and SUMO conjugation and deconjugation. Biochem Soc Trans 2018; 46:423-436.
17. Zhang H, Huang D, Zhou J, Yue Y, Wang X. SUMOylation participates in induction of ischemic tolerance in mice. Brain Res Bull 2019; 147:159-164.
18. Lee YJ, Mou Y, Klimanis D, Bernstock JD, Hallenbeck JM. Global SUMOylation is a molecular mechanism underlying hypothermia-induced ischemic tolerance. Front Cell Neurosci 2014; 8:416-424.
19. Kunz K, Piller T, Müller S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci 2018;131:jcs211904-211911.
20. Guo C, Wilkinson KA, Evans AJ, Rubin PP, Henley JM. SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. Sci Rep 2017; 7:43811-43821.
21. Sun G, Qin W, Wang Q, Sun X, Chen H, Li J, et al. Selective-cerebral-hypothermia-induced neuroprotection against-focal cerebral ischemia/reperfusion injury is associated with an increase in SUMO2/3 conjugation. Brain Res 2021; 1756:147311.
22. Yang GY, Zhao YJ, Davidson BL, Betz AL. Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury. Brain Res 1997; 751:181-188.
23. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996; 27:1616-1622.
24. Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu X, et al. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 2019; 16:168-182.
25. Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, et al. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-synuclein expression in a model of parkinson’s disease. Mol Ther Nucleic Acids 2017; 9:57-68.
26. Yang YQ, Li H, Zhang XS, Li W, Huang LT, Yu Z, et al. Inhibition of SENP3 by lentivirus induces suppression of apoptosis in experimental subarachnoid hemorrhage in rats. Brain Res 2015; 1622:270-278.
27. Wei B, Wang Z, Lian Q, Chi B, Ma S. hsa_circ_0139402 promotes bladder cancer progression by regulating hsa-miR-326/PAX8 signaling. Dis Markers 2022; 2022:9899548-9899564.
28. Li Z, Yang M, Lin Y, Liang S, Liu W, Chen B, et al. Electroacupuncture promotes motor function and functional connectivity in rats with ischemic stroke: An animal resting-state functional magnetic resonance imaging study. Acupunct Med 2021; 39:146-155.
29. Ma B, Liu Y, Zhang X, Zhang R, Zhang Z, Zhang Z, et al. TSPO ligands protect against neuronal damage mediated by LPS-induced BV-2 microglia activation. Oxid Med Cell Longev 2022; 2022:5896699-5896711.
30. Tsivgoulis G, Saqqur M, Sharma VK, Brunser A, Eggers J, Mikulik R, et al. Timing of recanalization and functional recovery in acute ischemic stroke. J Stroke 2020; 22:130-140.
31. Katan M, Luft A. Global burden of stroke. Semin Neurol 2018; 38:208-211.
32. Jean WC, Spellman SR, Nussbaum ES, Low WC. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 1998; 43:1382-1396.
33. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron 2010; 67:181-198.
34. Eyileten C, Wicik Z, De Rosa S, Mirowska-Guzel D, Soplinska A, Indolfi C, et al. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke-A comprehensive review and bioinformatic analysis. Cells 2018; 7:249-282.
35. Xu SY, Jiang XL, Liu Q, Xu J, Huang J, Gan SW, et al. Role of rno-miR-124-3p in regulating MCT1 expression in rat brain after permanent focal cerebral ischemia. Genes Dis 2019; 6:398-406.
36. Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, et al. miRNA involvement in cerebral ischemia-reperfusion injury. Front Neurosci 2022; 16:901360-901383.
37. Min XL, Wang TY, Cao Y, Liu J, Li JT, Wang TH. MicroRNAs: a novel promising therapeutic target for cerebral ischemia/reperfusion injury? Neural Regen Res 2015; 10:1799-1808.
38. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal 2018;11:eaat4285-4313.
39. Liu da Z, Jickling GC, Ander BP, Hull H, Zhan X, Cox C, et al. Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2016; 36:1374-1383.
40. Sun H, Li JJ, Feng ZR, Liu HY, Meng AG. MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3. Exp Ther Med 2020; 20:227-234.
41. Chen C, Chang X, Zhang S, Zhao Q, Lei C. CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered 2022; 13:10258-10273.
42. Peng Y, Shen X, Jiang H, Chen Z, Wu J, Zhu Y, et al. miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res 2018; 27:65-71.
43. Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z, et al. miR-188-5p suppresses cellular proliferation and migration via IL6ST: A potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 2020; 235:4890-4901.
44. Yang X, Wang P. MiR-188-5p and MiR-141-3p influence prognosis of bladder cancer and promote bladder cancer synergistically. Pathol Res Pract 2019; 215:152598.
45. Xu J, Yu D, Bai X, Zhang P. Long non-coding RNA growth arrest specific transcript 5 acting as a sponge of MicroRNA-188-5p to regulate SMAD family member 2 expression promotes myocardial ischemia-reperfusion injury. Bioengineered 2021; 12:6674-6686.
46. Choi SG, Kim H, Jeong EI, Lee HJ, Park S, Lee SY, et al. SUMO-Modified FADD recruits cytosolic drp1 and caspase-10 to mitochondria for regulated necrosis. Mol Cell Biol 2017; 37:e00254-316.
47. Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 2018; 52:1081-1094.
48. Sun M, Chen X, Yin YX, Gao Y, Zhang L, Chen B, et al. Role of pericyte-derived SENP1 in neuronal injury after brain ischemia. CNS Neurosci Ther 2020; 26:815-828.
49. Brandsma CA, Guryev V, Timens W, Ciconelle A, Postma DS, Bischoff R, et al. Integrated proteogenomic approach identifying a protein signature of COPD and a new splice variant of SORBS1. Thorax 2020; 75:180-183.
50. Martins WC, Tasca CI, Cimarosti H. Battling alzheimer’s disease: Targeting SUMOylation-mediated pathways. Neurochem Res 2016; 41:568-578.
51. Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, et al. A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy 2020; 16:975-990.
52. Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 2007; 27:950-962.
53. Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77.
54. Hendriks IA, Lyon D, Su D, Skotte NH, Daniel JA, Jensen LJ, et al. Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 2018; 9:2456-2472.
55. Yu S, Galeffi F, Rodriguiz RM, Wang Z, Shen Y, Lyu J, et al. Small ubiquitin-like modifier 2 (SUMO2) is critical for memory processes in mice. FASEB J 2020; 34:14750-14767.
56. Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM. SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 2013; 32:1514-1528.