Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword

Document Type : Review Article

Authors

1 Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

2 Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran

3 Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Epilepsy Research Center, Münster University, Münster, Germany

5 Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

10.22038/ijbms.2024.81644.17669

Abstract

Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and autophagy. Considering the poor survival and increased resistance to currently approved treatments for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and discussed the existing knowledge regarding the important role eof circRNAs in the emergence of resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing the effectiveness of glioma therapeutic strategies.

Keywords

Main Subjects


1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. Cbtrus statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro Oncol 2018; 20:iv1-iv86.
2. Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476:1-12.
3. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro Oncol 2014; 16:896-913.
4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131:803-820.
5. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64:479-489.
6. Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neurooncol 2012; 108:11-27.
7. Bush NA, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev 2017; 40:1-14.
8. Cruz JVR, Batista C, Afonso BH, Alexandre-Moreira MS, Dubois LG, Pontes B, et al. Obstacles to glioblastoma treatment two decades after temozolomide. cancers (Basel) 2022; 14: 1-23.
9. Messaoudi K, Clavreul A, Lagarce F. Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 2015; 20:899-905.
10. Xie C, Sheng H, Zhang N, Li S, Wei X, Zheng X. Association of MSH6 mutation with glioma susceptibility, drug resistance and progression. Mol Clin Oncol 2016; 5:236-240.
11. Meng W, Palmer JD, Siedow M, Haque SJ, Chakravarti A. Overcoming radiation resistance in gliomas by targeting metabolism and DNA repair pathways. Int J Mol Sci 2022; 23:2246.
12. Ou A, Yung WKA, Majd N. Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci 2020; 22:351-374.
13. Drean A, Rosenberg S, Lejeune FX, Goli L, Nadaradjane AA, Guehennec J, et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma. J Neurooncol 2018; 138:479-486.
14. Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother 2015; 15:741-752.
15. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 2009; 125:717-722.
16. Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G. Proneural-mesenchymal transition: Phenotypic plasticity to acquire multitherapy resistance in glioblastoma. Int J Mol Sci 2019; 20:2746.
17. Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, et al. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187.
18. Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, et al. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864.
19. Ebrahimi S, Hashemy SI. MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr) 2019; 42:131-141.
20. Mirzavi F, Ebrahimi S, Ghazvini K, Hasanian SM, Hashemy SI. Diagnostic, prognostic, and therapeutic potencies of circulating mirnas in acute myocardial infarction. Crit Rev Eukaryot Gene Expr 2019; 29:333-342.
21. Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease. Genes (Basel) 2017; 8:353-369.
22. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12:381-388.
23. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56:55-66.
24. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20:675-691.
25. Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer 2020; 19:119.
26. Zhao X, Cai Y, Xu J. Circular RNAs: Biogenesis, mechanism, and function in human cancers. Int J Mol Sci 2019; 20:3926-3938.
27. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer 2019; 18:6-15.
28. Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, et al. Advances in the study of CircRNAs in tumor drug resistance. Front Oncol 2022; 12:868363.
29. Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, et al. CircRNAs in anticancer drug resistance: Recent advances and future potential. Mol Cancer 2020; 19:127-146.
30. Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis 2022; 13:596-610.
31. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends Cancer 2020; 6:319-336.
32. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19:141-157.
33. Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in glioma: Biological functions and potential clinical applications. Mol Cancer 2020; 19:66-79.
34. Zhu J, Ye J, Zhang L, Xia L, Hu H, Jiang H, et al. Differential expression of circular RNAs in glioblastoma multiforme and its correlation with prognosis. Transl Oncol 2017; 10:271-279.
35. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019; 176:869-881. 
36. Guo X, Piao H. Research progress of circRNAs in glioblastoma. Front Cell Dev Biol 2021; 9:791892.
37. Peng D, Luo L, Zhang X, Wei C, Zhang Z, Han L. CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother 2022; 151:113150.
38. Sun W, Zhou H, Han X, Hou L, Xue X. Circular RNA: A novel type of biomarker for glioma (Review). Mol Med Rep 2021; 24: 1-12.
39. Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, et al. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front Cell Dev Biol 2021; 9:716462.
40. Ahmed SP, Castresana JS, Shahi MH. Role of circular RNA in brain tumor development. Cells 2022; 11: 1-28.
41. Fan J, Wang Y, Liang X, Zhou F, Li S, Li X, et al. Roles of circular RNAs in regulating the development of glioma. J Cancer Res Clin Oncol 2023; 149:979-993.
42. Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer 2020; 19:34-51.
43. Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3:198-210.
44. Zhao C, Gao Y, Guo R, Li H, Yang B. Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma. Invest New Drugs 2020; 38:1227-1235.
45. Hua L, Huang L, Zhang X, Feng H. Downregulation of hsa_circ_0000936 sensitizes resistant glioma cells to temozolomide by sponging miR-1294. J Biosci 2020; 45:101-111.
46. Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (albany NY) 2021; 13:2198.
47. Luo K, Liu A, Wu H, Liu Q, Dai J, Liu Y, et al. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis 2022; 13:740-750.
48. Li W, Ma Q, Liu Q, Yan P, Wang X, Jia X. Circ-VPS18 knockdown enhances TMZ sensitivity and inhibits glioma progression by MiR-370/RUNX1 axis. J Mol Neurosci 2021; 71:1234-1244.
49. Tan Z, Song L, Wu W, Zhou Y, Zhu J, Wu G, et al. TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene 2018; 37:5403-5415.
50. Yin H, Cui X. Knockdown of circHIPK3 facilitates temozolomide sensitivity in glioma by regulating cellular behaviors through miR-524-5p/KIF2A-mediated PI3K/AKT pathway. Cancer Biother  Radiophar 2021; 36:556-567.
51. Li H, Liu Q, Chen Z, Wu M, Zhang C, Su J, et al. Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p. Cell Death Dis 2021; 12:252-263.
52. North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5:224-235.
53. Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, et al. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem 2019; 120:6698-6708.
54. Hua L, Huang L, Zhang X, Feng H, Shen B. Knockdown of circular RNA CEP128 suppresses proliferation and improves cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145-5p. Neuroreport 2019; 30:1231-1238.
55. Li G, Lan Q. Exosome-mediated transfer of CIRC-GLIS3 enhances temozolomide resistance in glioma cells through the miR-548m/MED31 axis. Cancer Biother Radiopharm 2023; 38:62-73.
56. Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res 2021; 40:164-181.
57. Galardi S, Michienzi A, Ciafre SA. Insights into the regulatory role of m(6)A epitranscriptome in glioblastoma. Int J Mol Sci 2020; 21:1-16.
58. Bhawe K, Felty Q, Yoo C, Ehtesham NZ, Hasnain SE, Singh VP, et al. Nuclear respiratory factor 1 (NRF1) transcriptional activity-driven gene signature association with severity of astrocytoma and poor prognosis of glioblastoma. Mol Neurobiol 2020; 57:3827-3845.
59. Liu B, Wei H, Lan M, Jia N, Liu J, Zhang M. MicroRNA-21 mediates the protective effects of salidroside against hypoxia/reoxygenation-induced myocardial oxidative stress and inflammatory response. Exp Ther Med 2020; 19:1655-1664.
60. Li X, Wang N, Leng H, Yuan H, Xu L. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis 2022; 37:2979-2993.
61. Han C, Wang S, Wang H, Zhang J. Exosomal circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biother Radiopharm 2021; 36:537-548.
62. Satow R, Nakamura T, Kato C, Endo M, Tamura M, Batori R, et al. ZIC5 drives melanoma aggressiveness by PDGFD-mediated activation of FAK and STAT3. Cancer Res 2017; 77:366-377.
63. Si J, Li W, Li X, Cao L, Chen Z, Jiang Z. Heparanase confers temozolomide resistance by regulation of exosome secretion and circular RNA composition in glioma. Cancer Sci 2021; 112:3491-3506.
64. Li G, Lan Q. Bioinformatics analysis reveals a stem cell-expressed circ-Serpine2-mediated miRNA-mRNA regulatory subnetwork in the malignant progression of glioma. J Transl Med 2021; 19:444-458.
65. Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, et al. The influence of circular RNAs on autophagy and disease progression. Autophagy 2022; 18:240-253.
66. Zhou Z, Zhang Y, Gao J, Hao X, Shan C, Li J, et al. Circular RNAs act as regulators of autophagy in cancer. Molecular Therapy-Oncolytics 2021; 21:242-254.
67. Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, et al. Dual role of autophagy in hallmarks of cancer. Oncogene 2018; 37:1142-1158.
68. Eskelinen E-L. The dual role of autophagy in cancer. Current opinion in pharmacology 2011; 11:294-300.
69. Feng F, Zhang M, Yang C, Heng X, Wu X. The dual roles of autophagy in gliomagenesis and clinical therapy strategies based on autophagic regulation mechanisms. Biomed Pharmacother 2019; 120:109441.
70. Chi G, Xu D, Zhang B, Yang F. Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact 2019; 308:198-205.
71. Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, et al. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther 2022; 28:897-912.
72. Zhang W, Shi Z, Chen S, Shen S, Tu S, Yang J, et al. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div 2023; 18:1-9.
73. Carruthers RD, Ahmed SU, Ramachandran S, Strathdee K, Kurian KM, Hedley A, et al. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res 2018; 78:5060-5071.
74. Zhao M, Xu J, Zhong S, Liu Y, Xiao H, Geng L, et al. Expression profiles and potential functions of circular RNAs in extracellular vesicles isolated from radioresistant glioma cells. Oncol Rep 2019; 41:1893-1900.
75. Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W, et al. Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol 2018; 315:C225-C235.
76. Zhou C, Yang F, Xi W, Wei M, Zheng G, Wang W, et al. [Effect of RNF2 knockdown on apoptosis and radiosensitivity in glioma U87 cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2014; 30:471-475.
77. Di L, Zhao X, Ding J. Knockdown of circ_0008344 contributes to radiosensitization in glioma via miR-433-3p/RNF2 axis. J Biosci 2021; 46:82-94.
78. Yan Q, Chen BJ, Hu S, Qi SL, Li LY, Yang JF, et al. Emerging role of RNF2 in cancer: From bench to bedside. J Cell Physiol 2021; 236:5453-5465.
79. Yang XX, Ma M, Sang MX, Wang XX, Song H, Liu ZK, et al. Radiosensitization of esophageal carcinoma cells by knockdown of RNF2 expression. Int J Oncol 2016; 48:1985-1996.
80. Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRalpha pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci 2021; 17:1061-1078.
81. Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. Correction to: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 2019; 18:149-150.
82. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999; 99:2467-2498.
83. Witman G, Cadman E, Kapp D, Wagner F. The use of cisplatinum for treatment of malignant glioma. Med Hypotheses 1982; 8:335-341.
84. Lu E, Gareev I, Yuan C, Liang Y, Sun J, Chen X, et al. The mechanisms of current platinum anticancer drug resistance in the glioma. Curr Pharm Des 2022; 28:1863-1869.
85. Luo H, Yi T, Huang D, Chen X, Li X, Wan Q, et al. circ_PTN contributes to-cisplatin resistance in glioblastoma via PI3K/AKT signaling through the miR-542-3p/PIK3R3 pathway. Molecular Therapy-Nucleic Acids 2021; 26:1255-1269.
86. Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β‐catenin signaling pathway. CNS Neurosci Ther 2022; 28:884-896.
87. Lee P, Murphy B, Miller R, Menon V, Banik NL, Giglio P, et al. Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Res 2015; 35:615-625.
88. Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, et al. The application of histone deacetylases inhibitors in glioblastoma. J Exp Clin Cancer Res 2020; 39:138-155.
89. Meng L, Wang Y, Tu Q, Zhu Y, Dai X, Yang J. Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma. Metab Brain Dis 2023; 38:1351-1364.
90. Kannan S, Murugan AK, Balasubramanian S, Munirajan AK, Alzahrani AS. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharmacol 2022; 201:115090.
91. Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells 2021; 10:621-640.
92. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756-760.
93. Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:989-999.
94. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488:522-526.
95. Matsui WH. Cancer stem cell signaling pathways. Medicine (Baltimore) 2016; 95:S8-S19.
96. Kim SH, Ezhilarasan R, Phillips E, Gallego-Perez D, Sparks A, Taylor D, et al. Serine/threonine kinase MLK4 determines mesenchymal identity in glioma stem cells in an NF-kappaB-dependent manner. Cancer Cell 2016; 29:201-213.
97. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28:17-28.
98. Tomar VS, Patil V, Somasundaram K. Temozolomide induces activation of Wnt/beta-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol 2020; 36:273-278.
99. Ou A, Ott M, Fang D, Heimberger AB. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers (Basel) 2021; 13:437-461.
100. Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 2013; 110:6829-6834.
101. Golestaneh N, Mishra B. TGF-beta, neuronal stem cells and glioblastoma. Oncogene 2005; 24:5722-5730.
102. Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res 2019; 38:398.
103. Jin C, Zhao J, Zhang ZP, Wu M, Li J, Liu B, et al. CircRNA EPHB4 modulates stem properties and proliferation of gliomas via sponging miR-637 and up-regulating SOX10. Mol Oncol 2021; 15:596-622.
104. Wang Y, Wang B, Zhou F, Lv K, Xu X, Cao W. CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J Transl Med 2023; 21:22-35.
105. Zhou F, Wang B, Wang H, Hu L, Zhang J, Yu T, et al. circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Molecular Therapy-Nucleic Acids 2021; 25:25-36.
106. Jiang Y, Wang Z, Ying C, Hu J, Zeng T, Gao L. FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs. Oncogene 2021; 40:4094-4110.
107. Hou D, Wang Z, Li H, Liu J, Liu Y, Jiang Y, et al. Circular RNA circASPM promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-130b-3p/E2F1 axis. J Cancer 2022; 13:1664-1678.
108. Li FF, Xing C, Wu LL, Xue F. MiR-205 enhances cisplatin sensitivity of glioma cells by targeting E2F1. Eur Rev Med Pharmacol Sci 2018; 22:299-306.
109. Guowei L, Yanping J. Bioinformatics analysis of stem cell circ-ASB3 signaling pathway and its affection on glioma biological characteristics. Front Neuroinform 2022; 16:859937.
110. Zhou J, Wang C, Liu Y, Cui D, Wang Z, Jiang Y, et al. Circular RNA circPTPRF promotes the progression of GBM via sponging miR-1208 to up-regulate YY1. Cancer Cell Int 2022; 22:359-373.
111. Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, et al. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res 2020; 39:182-203.
112. Li H, Jiang Y, Hu J, Xu J, Chen L, Zhang G, et al. The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-beta pathway. Cell Death Dis 2023; 14:23-37.
113. Chen WC, Li QL, Pan Q, Zhang HY, Fu XY, Yao F, et al. Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of tongue squamous cell carcinoma (TSCC) via activation of NF-kappaB signaling. J Exp Clin Cancer Res 2019; 38:167-178.
114. Zhao J, Jiang Y, Zhang H, Zhou J, Chen L, Li H, et al. The SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop regulates the proliferation of glioma stem cells via the IL6-mediated JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res 2021; 40:134-156.
115. Xu J, Zhang G, Hu J, Li H, Zhao J, Zong S, et al. UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis 2022; 13:645-659.
116. Jiang Y, Zhao J, Liu Y, Hu J, Gao L, Wang H, et al. CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-alpha/NF-kappaB signaling. Cell Death Dis 2022; 13:697-710.
117. Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li B, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol 2021; 22:33-61.
118. Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 8:1197-1206.
119. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985; 313:144-147.
120. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol 2021; 23:278-291.
121. Moujalled D, Southon AG, Saleh E, Brinkmann K, Ke F, Iliopoulos M, et al. BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death Differ 2022; 29:1335-1348.
122. Taylor WR, Fedorka SR, Gad I, Shah R, Alqahtani HD, Koranne R, et al. Small-molecule ferroptotic agents with potential to selectively target cancer stem cells. Sci Rep 2019; 9:5926-5939.
123. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer 2019; 19:405-414.
124. Chen S, Zhang Z, Zhang B, Huang Q, Liu Y, Qiu Y, et al. CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA. Int J Biol Sci 2022; 18:841-857.
125. Zhang HY, Zhang BW, Zhang ZB, Deng QJ. Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur Rev Med Pharmacol Sci 2020; 24:2585-2600.
126. Yao W, Wang J, Meng F, Zhu Z, Jia X, Xu L, et al. Circular RNA CircPVT1 inhibits 5-fluorouracil chemosensitivity by regulating ferroptosis through miR-30a-5p/FZD3 axis in esophageal cancer cells. Front Oncol 2021; 11:780938.
127. Xu T, Liu Y, Zhao Z, Liu J, Chai J, Yang Y, et al. Ferroptosis in cancer stem cells. Pathol Res Pract 2023; 245:154492.
128. Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit Rev Oncol Hematol 2020; 155:103095.
129. Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, et al. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res 2022; 41:307-326.
130. Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, et al. Correction: CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res 2022; 41:320.
131. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651.