Rosmarinic acid attenuated inflammation and apoptosis in folic acid-induced renal injury: Role of FoxO3/ NFκB pathway

Document Type : Original Article

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

3 Department of Physiology and Pharmacology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran

10.22038/ijbms.2024.80551.17436

Abstract

Objective(s): Rosmarinic acid (RA) is a herbal compound with various antioxidant and anti-inflammatory effects. This study aimed to explore the anti-inflammatory and anti-apoptotic properties of RA in folic acid-induced renal injury.
Materials and Methods: Thirty-six male C57/BL6 mice were randomly divided into six groups (N=6): Control (received normal saline), NaHCO3 (received NaHCO3 as folic acid solvent), FA (received folic acid (FA)(IP) to induce renal injury), RA (received 100 mg/kg RA), RA50-FA (received 50 mg/kg RA solution after folic acid injection), and RA100-FA (received 100 mg/kg RA after folic acid injection). For ten days, the treatment groups received RA by gavage. The effects of RA were assessed using H & E staining, biochemical tests, western blotting, and ELISA in the kidney tissues of the mice. Real-time RT-PCR was also performed to evaluate the expression changes of renal genes.
Results: Our data showed that treatment by RA led to the over-expression of FoxO3 (P<0.05) and decrease in NFκB levels (P<0.01 and P<0.05) and expression of TNFα (P<0.05) and IL6 (P<0.001 and P<0.01). Other evaluations showed a decrease in p53 (P<0.01 and P<0.001), Bax/Bcl-2 ratio expression (P<0.01 and P<0.05), and Caspase-3 level (P<0.01 and P<0.05) compared to the folic acid group. Histological and biochemical results also confirmed the attenuation of tissue damage.
Conclusion: This study revealed that RA’s positive effects on folic acid-induced renal injury might result from the involvement of the FoxO3/NFκB pathway, thereby suppressing inflammation and apoptosis.

Keywords

Main Subjects


1. Lamprea-Montealegre JA, Joshi P, Shapiro AS, Madden E, Navarra K, Potok OA, et al. Improving chronic kidney disease detection and treatment in the United States: The chronic kidney disease cascade of care (C(3)) study protocol. BMC Nephrol 2022;23:331-335.
2. Yan LJ. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021;4:329-342.
3. Zadarko-Domaradzka M, Kruszyńska E, Zadarko E. Effectiveness of folic acid supplementation recommendations among polish female students from the podkarpackie region. Nutrients 2021;13:1001-1008. 
4. Nikolic T, Petrovic D, Matic S, Turnic TN, Jeremic J, Radonjic K, et al. The influence of folic acid-induced acute kidney injury on cardiac function and redox status in rats. Naunyn Schmiedebergs Arch Pharmacol 2020;393:99-109. 
5. Kandel R, Singh KP. Higher concentrations of folic acid cause oxidative stress, acute cytotoxicity, and long-term fibrogenic changes in kidney epithelial cells. Chem Res Toxicol 2022;35:2168-2179. 
6. Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, Rojas-Morales P, León-Contreras JC, Martínez-Klimova E, et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Radic Biol Med 2020;154:18-32.
7. Srivastava SP, Kanasaki K, Goodwin JE. Loss of mitochondrial control impacts renal health. Front Pharmacol 2020;11:543973. 
8. Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu L, Necula LG, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018;2018:2180-2373. 
9. Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep 2021;11:23587. 
10. Coyne DW, Fleming R. Will targeting interleukin-6 in the anemia of CKD change our treatment paradigm?. J Am Soc Nephrol 2021;32:6-8. 
11. Sabio G, Davis RJ, editors. TNF and MAP kinase signalling pathways. Semin Immunol 2014;26:237-245. 
12. Baer PC, Koch B, Geiger H. Kidney inflammation, injury and regeneration 2020. Int J Mol Sci 2021;22:5589-5591. 
13. Qian M, Fang X, Wang X. Autophagy and inflammation. Clin Transl Med 2017;6:24-35. 
14. Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases. Cells 2019; 8:61-72
15. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell Death in the Kidney. Int J Mol Sci 2019; 20:3598.
16. Xu S, Zhang X, Ma Y, Chen Y, Xie H, Yu L, et al. FOXO3a alleviates the inflammation and oxidative stress via regulating TGF-β and HO-1 in ankylosing spondylitis. Front Immunol 2022;13: 935534-935542. 
17. Wang S, Hu X, Ma L, Zhang L, Tian Y. CLCF1 is up-regulated in renal ischemia reperfusion injury and may associate with FOXO3. Ann Transl Med 2022;10:399-426. 
18. Guo X, Zhu Y, Sun Y, Li X. IL-6 accelerates renal fibrosis after acute kidney injury via DNMT1-dependent FOXO3a methylation and activation of Wnt/β-catenin pathway. Int Immunopharmacol 2022;109:108746-108751. 
19. Yang C, Cao Y, Zhang Y, Li L, Xu M, Long Y, Rong R, Zhu T. Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway. J Transl Med. 2015;13:355-421. 
20. Jiang M, Wang CY, Huang S, Yang T, Dong Z. Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol Renal Physiol 2009;296: 983-993. 
21. Liu X-q, Jiang L, Li Y-y, Huang Y-b, Hu X-r, Zhu W, et al. Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease. Acta Pharmacologica Sinica 2022;43:96-110. 
22. Havasi A, Dong Z, editors. Autophagy and tubular cell death in the kidney. Seminars in nephrology 2016;36:174-188.
23. Jiang WL, Xu Y, Zhang SP, Hou J, Zhu HB. Effect of rosmarinic acid on experimental diabetic nephropathy. Basic Clin Pharmacol Toxicol 2012;110:390-395. 
24. Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, et al. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022;45:205-228. 
25. El-Desouky MA, Mahmoud MH, Riad BY, Taha YM. Nephroprotective effect of green tea, rosmarinic acid and rosemary on N-diethylnitrosamine initiated and ferric nitrilotriacetate promoted acute renal toxicity in Wistar rats. Interdiscip Toxicol 2019;12:98-110. 
26. Jafaripour L, Naserzadeh R, Alizamani E, Javad Mashhadi SM, Moghadam ER, Nouryazdan N, Ahmadvand H. Effects of rosmarinic acid on methotrexate-induced nephrotoxicity and hepatotoxicity in wistar rats. Indian J Nephrol 2021;31:218-24. 
27. Khalaf AA, Hassanen EI, Ibrahim MA, Tohamy AF, Aboseada MA, Hassan HM, Zaki AR. Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J Biochem Mol Toxicol 2020;34:e22579. 
28. Zhang Y, Chen X, Yang L, Zu Y, Lu Q. Effects of rosmarinic acid on liver and kidney anti-oxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct  2015;6:927-931.
29. Marinho S, Illanes M, Ávila-Román J, Motilva V, Talero E. Anti-inflammatory effects of rosmarinic acid-loaded nanovesicles in acute colitis through modulation of NLRP3 inflammasome. Biomolecules 2021;11:162-171. 
30. Liang Z, Wu L, Deng X, Liang Q, Xu Y, Deng R, et al. The anti-oxidant rosmarinic acid ameliorates oxidative lung damage in experimental allergic asthma via modulation of NADPH oxidases and anti-oxidant enzymes. Inflammation 2020;43:12-190. 
31. Jang AH, Kim TH, Kim GD, Kim JE, Kim HJ, Kim SS, et al. Rosmarinic acid attenuates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int Immunopharmacol 2011;11:1271-1277. 
32. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K, et al. Rosmarinic acid attenuates inflammation in experimentally induced arthritis in Wistar rats, using Freund’s complete adjuvant. Int J Rheum Dis 2019;22:1247-1254.
33. Lu B, Li C, Jing L, Zhuang F, Xiang H, Chen Y, Huang B. Rosmarinic acid nanomedicine for rheumatoid arthritis therapy: Targeted RONS scavenging and macrophage repolarization. J Control Release 2023;362:631-646. 
34. Liu D, Zhong Z, Karin M. NF-κB: A double-edged sword controlling inflammation. Biomedicines 2022;10:1250-1262. 
35. Li Z, Zhang H, Chen Y, Fan L, Fang J. Forkhead transcription factor FOXO3a protein activates nuclear factor κB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J Biol Chem 2012;287:17737-17745. 
36. Yin Y, Wang J, Zhao X, Wu X, Zou H, Qin Z, Cao J. Overexpressed FOXO3 improves inflammatory status in mice by affecting NLRP3-mediated cell coronation in necrotizing colitis mice. Biomed Pharmacother 2020;125:109867-109875. 
37. Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, et al. FoxO3 modulates lps-activated hepatic inflammation in turbot (Scophthalmus maximus L.). Front Immunol 2021;12:679704-679719. 
38. Audesse AJ, Dhakal S, Hassell LA, Gardell Z, Nemtsova Y, Webb AE. FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 2019;15:1008097-1008125.
39. Gao Y, Wang C, Jiang D, An G, Jin F, Zhang J, et al. New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Front Cell Dev Biol 2022;10:994037-994049. 
40. Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 2013;288:84504-84591. 
41. Mohd Zawawi Z, Kalyanasundram J, Mohd Zain R, Thayan R, Basri DF, Yap WB. Prospective roles of tumor necrosis factor-alpha (TNF-α) in COVID-19: Prognosis, theraputic and management. Int J Mol Sci  2023;24:6142-6156. 
42. Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol 2015;116:398-413. 
43. Gonçalves C, Fernandes D, Silva I, Mateus V. Potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. Molecules 2022;27:609-621. 
44. Joardar S, Dewanjee S, Bhowmick S, Dua TK, Das S, Saha A, De Feo V. Rosmarinic acid attenuates cadmium-induced nephrotoxicity via inhibition of oxidative stress, apoptosis, inflammation and fibrosis. Int J Mol Sci 2019;20:2027-2041.
45. Domitrović R, Potočnjak I, Crnčević-Orlić Z, Škoda M. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice. Food Chem Toxicol 2014;66:321-328. 
46. Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive effects of rosmarinic acid rich fraction from perilla on oxidative stress, inflammation and metastasis ability in A549 cells exposed to PM via C-Jun, P-65-Nf-Κb and Akt signaling pathways. Biomolecules  2021;11:1090-1095.
47. Kuypers FA. Hyperinflammation, apoptosis, and organ damage. Exp Biol Med (Maywood) 2022;247:1112-23. 
48. Wang X, Liu W, Liu Y, Jiao Y, Rong C, Liu Q, Shi W. Florfenicol induced renal inflammatory response and apoptosis via cell adhesion molecules signaling pathway. Poult Sci 2022;101:102152-102166. 
49. Krasovec G, Horkan HR, Quéinnec É, Chambon JP. The constructive function of apoptosis: More than a dead-end job. Front Cell Dev Biol 2022;10:1033645-1033667. 
50. Naderi R, Shirpoor A, Samadi M, Pourheydar B, Moslehi A. Tropisetron attenuates pancreas apoptosis in the STZ-induced diabetic rats: involvement of SIRT1/NF-kappaB signaling. Pharmacol Rep 2020;72:1657-1665. 
51. Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023;8:92-104. 
52. Yang LQ, Fang DC, Wang RQ, Yang SM. Effect of NF-kappaB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World J Gastroenterol 2004;10:22-25. 
53. Mohany M, Ahmed MM, Al-Rejaie SS. The role of NF-κB and Bax/Bcl-2/caspase-3 signaling pathways in the protective effects of sacubitril/valsartan (Entresto) against HFD/STZ-induced diabetic kidney disease. Biomedicines 2022;10:2863-2878. 
54. Komeili Movahhed T, Moslehi A, Golchoob M, Ababzadeh S. Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions. Iran J Basic Med Sci 2019;22:736-744. 
55. Srinivas G, Kusumakumary P, Nair MK, Panicker KR, Pillai MR. Mutant p53 protein, Bcl-2/Bax ratios and apoptosis in paediatric acute lymphoblastic leukaemia. J Cancer Res Clin Oncol 2000;126:62-67. 
56. Dirican E, Özcan H, Karabulut Uzunçakmak S, Takım U. Evaluation expression of the caspase-3 and caspase-9 apoptotic genes in schizophrenia patients. Clin Psychopharmacol Neurosci 2023;21:171-178. 
57. Yang C, Cao Y, Zhang Y, Li L, Xu M, Long Y, Rong R, Zhu T. Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway. J Transl Med 2015;13:355-368. 
58. ALTamimi JZ, AlFaris NA, Al-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J Nutr Biochem 2021;87:108515-108528. 
59. Luo W, Tao Y, Chen S, Luo H, Li X, Qu S, et al. Rosmarinic acid ameliorates pulmonary ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Frontiers in Pharmacology 2022;13:860944-860971. 
60. Jeong M-J, Lim D-S, Kim SO, Park C, Leem S-H, Lee H, et al. Protection of oxidative stress-induced DNA damage and apoptosis by rosmarinic acid in murine myoblast C2C12 cells. Biotechnol  Bioprocess Eng 2022;27:171-182.