Potential therapeutic effects of shrimp protein hydrolysates on NAFLD-induced infertility disorders: Insights into redox balance, heat shock protein expression, and chromatin compaction in male rats

Document Type : Original Article

Authors

1 Department of Biology, Faculty of Science, Urmia University, Urmia, Iran

2 Division of Comparative Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

3 Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran

10.22038/ijbms.2024.76649.16589

Abstract

Objective(s): Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage. 
Materials and Methods: The study divided rats into four groups: control, a group subjected to a high-fat diet (HFD) to induce NAFLD without supplementation, and two HFD-induced NAFLD groups receiving HP doses (20 and 300 mg/kg). After 70 days, the testicular total anti-oxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), HSP70-2a, HSP90 expression, and TP mRNA levels were assessed. 
Results: The results showed that HFD-induced NAFLD significantly increased GSH and MDA levels and disrupted the GSH/GSSG ratio (P<0.05) while also reducing HSP70-2a, HSP90, TP1, and TP2 expression (P<0.05). However, HP administration effectively restored testicular redox balance, reduced oxidative stress, and enhanced these protective proteins’ expression compared to HFD (P<0.05). 
Conclusion: NAFLD negatively affects the testicular redox system and HSP and TP expression, disrupting male fertility potential. In contrast, HP-treated rats showed a marked effect on NAFLD-induced damage by improving testicular anti-oxidant status and regulating the expression of HSPs and TP proteins. These findings suggest a potential therapeutic role for HP in safeguarding male fertility against the damaging effects of NAFLD.

Keywords

Main Subjects


1. Takeshima T, Usui K, Mori K, Asai T, Yasuda K, Kuroda S, et al. Oxidative stress and male infertility. Reprod Med Biol 2021; 20: 41-52.
2. Garcia-Segura S, Ribas-Maynou J, Lara-Cerrillo S, Garcia-Peiró A, Castel AB, Benet J, et al. Relationship of seminal oxidation-reduction potential with sperm DNA integrity and pH in idiopathic infertile patients. Biology 2020; 9: 262-274.
3. Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol 2014; 5: 56-60.
4. Akhigbe R, Hamed M, Odetayo A, Akhigbe T, Ajayi A, Ajibogun F. Omega-3 fatty acid rescues ischaemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother 2021;142:111975.
5. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, et al. Anti-oxidant responses and cellular adjustments to oxidative stress. Redox biol 2015; 6:183-197.
6. Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants 2021;10: 201-226.
7. Bekkering S, Saner C, Riksen NP, Netea MG, Sabin MA, Saffery R, et al. Trained immunity: Linking obesity and cardiovascular disease across the life-course? Trends Endocrinol Metab 2020; 31: 378–389.
8. Ezquerro S, Mocha F, Frühbeck G, Guzmán-Ruiz R, Valentí V, Mugueta C, et al. Ghrelin reduces TNF-α–induced human hepatocyte apoptosis, autophagy, and pyroptosis: role in obesity-associated NAFLD. J Clin Endocrinol Metab 2019;104: 21-37.
9. Hawksworth DJ, Burnett AL. Nonalcoholic fatty liver disease, male sexual dysfunction, and infertility: Common links, common problems. Sex Med Rev 2020; 8: 274-285.
10.    Luo D, Zhang M, Su X, Liu L, Zhou X, Zhang X, et al. High fat diet impairs spermatogenesis by regulating glucose and lipid metabolism in Sertoli cells. Life sci 2020; 257:118028.
11.    Hassani‐Bafrani H, Najaran H, Razi M, Rashtbari H. Berberine ameliorates experimental varicocele‐induced damages at testis and sperm levels; evidences for oxidative stress and inflammation. Andrologia 2019; 51: e13179.
12.    Marini HR, Micali A, Squadrito G, Puzzolo D, Freni J, Antonuccio P, et al. Nutraceuticals: A new challenge against cadmium-induced testicular injury. Nutrients 2022;14: 663-677.
13.    Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018;122: 877-902.
14.    Gharehbagh SA, Azar JT, Razi M. ROS and metabolomics-mediated autophagy in rat’s testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes. Life Sci 2021; 277:119585.
15.    Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015; 21:109-122.
16.    Takeshima T, Usui K, Mori K, Asai T, Yasuda K, Kuroda S, et al. Oxidative stress and male infertility. Reprod Med Biol 2021; 20: 41-52.
17.    Evans EP, Scholten JT, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, et al. Male subfertility and oxidative stress. Redox Biol 2021; 46:102071.
18.    Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction (Cambridge, England). 2016;151:55–70.
19.    Aeeni M, Razi M, Alizadeh A, Alizadeh A. The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sci 2021; 277:119394.
20.    Govin J, Caron C, Escoffier E, Ferro M, Kuhn L, Rousseaux S, et al. Post-meiotic shifts in HSPA2/HSP70. 2 chaperone activity during mouse spermatogenesis. J Biol Chem 2006; 281:37888-37892.
21.    Khosravanian N, Razi M, Farokhi F, Khosravanian H. Testosterone and vitamin E administration up-regulated varicocele-reduced Hsp70-2 protein expression and ameliorated biochemical alterations. J Assist Reprod Genet 2014; 31: 341-354.
22.    Rezazadeh-Reyhani Z, Razi M, Malekinejad H, Sadrkhanlou R. Cytotoxic effect of nanosilver particles on testicular tissue: evidence for biochemical stress and Hsp70-2 protein expression. Environ Toxicol Pharmacol 2015; 40: 626-638.
23.    Salmani S, Razi M, Sarrafzadeh-Rezaei F, Mahmoudian A. Testosterone amplifies HSP70-2a, HSP90 and PCNA expression in experimental varicocele condition: Implication for DNA fragmentation. Reprod Biol 2020; 20: 384-395.
24.    Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta Gene Regul Mech 2014;1839:155-168.
25.    Matts RL, Brandt GE, Lu Y, Dixit A, Mollapour M, Wang S, et al. A systematic protocol for the characterization of Hsp90 modulators. Bioorg Med Chem 2011; 19: 684-692.
26.    Moradi-Ozarlou M, Moshari S, Agdam HR, Nomanzadeh A, Shahmohamadlou S, Razi M. High-fat diet-induced obesity amplifies HSP70-2a and HSP90 expression in testicular tissue; correlation with proliferating cell nuclear antigen (PCNA). Life Sci 2021; 279: 119633.
27.    Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci U S A 2009;106:1157-1162.
28.    Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 2007;12: 245–254.
29.    Qian Z-J, Jung W-K, Byun H-G, Kim S-K. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour Technol 2008; 99: 3365-3371.
30.    Tabbene O, Gharbi D, Slimene IB, Elkahoui S, Alfeddy MN, Cosette P, et al. Anti-oxidative and DNA protective effects of bacillomycin D-like lipopeptides produced by B38 strain. Appl Biochem Biotechnol 2012; 168: 2245-2256.
31.    Li S, Liu L, He G, Wu J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food funct 2018;9:42-52.
32.    Picot L, Ravallec R, Fouchereau‐Péron M, Vandanjon L, Jaouen P, Chaplain‐Derouiniot M, et al. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J Sci Food Agric 2010; 90: 1819-1826.
33.    Nikoo M, Xu X, Regenstein JM, Noori F. Autolysis of pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and anti-oxidant activity of hydrolysates. Food Biosci 2021; 39:100844.
34.    Hadavi M, H Najdegerami E, Nikoo M, Nejati V. Protective effect of protein hydrolysates from Litopenaeus vannamei waste on oxidative status, glucose regulation, and autophagy genes in non-alcoholic fatty liver disease in Wistar rats. Iran J Basic Med Sci 2022; 193: 265-275
35.    Nasri R, Abdelhedi O, Jemil I, Daoued I, Hamden K, Kallel C, et al. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem Biol Interact 2015; 242: 71-80.
36.    Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015; 7: 6313-6329.
37.    Zhao Y-R, Wang D, Liu Y, Shan L, Zhou J-L. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats. J Physiol Sci 2016; 66: 229-239.
38.    Razi M, Sadrkhanloo R-A, Malekinejad H, Sarafzadeh-Rezaei F. Varicocele time-dependently affects DNA integrity of sperm cells: Evidence for lower in vitro fertilization rate in varicocele-positive rats. Int J Fertil Steril 2011; 5:174-185.
39.    Lowry OH,  Rosebrough N JJJbC. Protein measurement with the Folin phenol reagent 1951; 193: 265-275.
40.    Khavarimehr M, Nejati V, Razi M, Najafi GJIu. Ameliorative effect of omega-3 on spermatogenesis, testicular antioxidant status and preimplantation embryo development in streptozotocin-induced diabetes in rats. Int Urol Nephrol 2017; 49:1545-1560.
41.    Mahmoudian A, Markham PF, Noormohammadi AH, Devlin JM, Browning GF. Differential transcription patterns in wild-type and glycoprotein G-deleted infectious laryngotracheitis viruses. Avian Pathol 2013; 42: 253-259.
42.    Sudirman S, Su C-Y, Tsou D, Lee M-C, Kong Z-L. Hippocampus kuda protein hydrolysate improves male reproductive dysfunction in diabetic rats. Biomed Pharmacother 2021;140:111760.
43.    Moradian R, Najdegerami EH, Nikoo M, Nejati V. Ameliorating effects of bioactive peptides extracted from litopenaeus vannamei wastes on oxidative stress, glucose regulation, and autophagy gene expression in nonalcoholic fatty liver-induced rats. Evid Based Complement Alternat Med 2022; 1: 2679634.
44.    Galaly SR, Hozayen WG, Amin KA, Ramadan SM. Effects of orlistat and herbal mixture extract on brain, testes functions and oxidative stress biomarkers in a rat model of high fat diet. Beni Suef Univ J Basic Appl Sci 2014; 3: 93-105.
45.    Radmanesh F, Razi M, Shalizar-Jalali A. Curcumin nano-micelle induced testicular toxicity in healthy rats; evidence for oxidative stress and failed homeostatic response by heat shock proteins 70-2a and 90. Biomed Pharmacother 2021; 142:111945.
46.    Selvam MKP, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, et al. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic Biol Med 2020; 152: 375-1385.
47.    Xiao W, Loscalzo J. Metabolic responses to reductive stress. Antioxid Redox Signal 2020; 32: 1330-1347.
48.    Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci 2017; 18: 2098.
49.    Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. Int Dairy J 2021;104:1304-1317.
50.    Li M, Zhou M, Wei Y, Jia F, Yan Y, Zhang R, et al. The beneficial effect of oyster peptides and oyster powder on cyclophosphamide‐induced reproductive impairment in male rats: A comparative study. J Food Biochem 2020; 44: e13468.
51.    Hu Y-m, Lu S-z, Li Y-s, Wang H, Shi Y, Zhang L, et al. Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured HepG2 cells. Food Chem 2022; 373: 131539.
52.    Kim YM, Jeon YJ, Huh JS, Kim SD, Park KK, Cho M. Effects of enzymatic hydrolysate from seahorse Hippocampus abdominalis on testosterone secretion from TM3 Leydig cells and in male mice. Appl Biol Chem 2016; 59: 869-879.
53.    Padhi A, Ghaly MM, Ma L. Testis-enriched heat shock protein A2 (HSPA2): Adaptive advantages of the birds with internal testes over the mammals with testicular descent. Sci Rep 2016; 6:1-7.
54.    Cazzaniga A, Locatelli L, Castiglioni S, Maier JA. The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J 2019; 33: 5957-5966.
55.    Szyller J, Kozakiewicz M, Siermontowski P, Kaczerska D. Oxidative stress, HSP70/HSP90 and eNOS/iNOS serum levels in professional divers during hyperbaric exposition. Antioxidants 2022; 11:1008.
56.    Moldogazieva N, Mokhosoev I, Feldman N, Lutsenko S. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free radic res 2018; 52: 507-543.
57.    You L, Zhao M, Regenstein JM, Ren J. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Res Int 2010; 43: 1167-1173.
58.    Zhao L, Luo Y-C, Wang C-T, Ji B-P. Antioxidant activity of protein hydrolysates from aqueous extract of velvet antler (Cervus elaphus) as influenced by molecular weight and enzymes. Nat Prod Commun 2011; 6:1934578X1100601130.
59.    Meistrich ML, Hess RA. Assessment of spermatogenesis through staging of seminiferous tubules. Spermatogenesis 2013: 299-307.
60.    Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 2014; 7:1-12.
61.    Sriraman A, Debnath TK, Xhemalce B, Miller KM. Making it or breaking it: DNA methylation and genome integrity. Essays Biochem 2020; 64: 687-703.
62.    Laqqan M, Ahmed I, Yasin M, Hammadeh ME, Yassin M. Influence of variation in global sperm DNA methylation level on the expression level of protamine genes and human semen parameters. Andrologia 2019; 52: e13484-e.
63.    Zribi N, Chakroun NF, Elleuch H, Abdallah FB, Ben Hamida AS, Gargouri J, et al. Sperm DNA fragmentation and oxidation are independent of malondialdheyde. Reprod Biol Endocrinol 2011;9:1-8.
64.    Hamilton TRdS, Siqueira AFP, Castro LSd, Mendes CM, Delgado JdC, de Assis PM, et al. Effect of heat stress on sperm DNA: protamine assessment in ram spermatozoa and testicle. Oxid Med Cell Longev 2018; 1: 5413056.
65.    Ribas‐Maynou J, Abad C, García‐Segura S, Oliver‐Bonet M, Prada E, Amengual MJ, et al. Sperm chromatin condensation and single‐and double‐stranded DNA damage as important parameters to define male factor related recurrent miscarriage. Mol Reprod Dev 2020; 87:1126-1132.
66.    Habibi M, Abbasi B, Zavareh ZF, Esmaeili V, Shahverdi A, Gilani MAS, et al. Alpha-lipoic acid ameliorates sperm DNA damage and chromatin integrity in men with high DNA damage: A triple blind randomized clinical trial. Cell J (Yakhteh) 2022; 24: 603-611.