Effect of the S100A9/AMPK pathway on PM2.5-mediated mouse lung injury

Document Type : Original Article

Authors

1 Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Shenyang, Shenyang 110000, China

2 Department of Pathogen Biology, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People’s Republic of China

3 Department of Pathophysiology, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, China

4 Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China

5 The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, People’s Republic of China

6 Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People’s Republic of China

10.22038/ijbms.2024.80242.17374

Abstract

Objective(s): Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.5 µm, affect lung function and increase respiratory disease incidence and mortality rate. The molecular mechanism of lung injury and epithelial damage after PM2.5 exposure is not completely clear.
Materials and Methods: Mouth-nose exposure of mice was performed with PM2.5 or neutral saline. In vitro experiments were conducted to investigate the role of the S100A9/AMPK pathway in PM2.5-mediated lung injury.
Results: PM2.5 exposure in mice caused lung epithelial damage, alveolar wall thickening, and alveolar wall structure destruction. The 16S rRNA sequencing results suggested that the microecology structure of lung tissue was altered after PM2.5 exposure. Proteomic sequencing was performed to explore the underlying mechanism, and 71 differentially expressed proteins were identified. KEGG database analysis of the up-regulated differential proteins revealed regulatory networks, including fat digestion and absorption, the AMPK signaling pathway, and the PPAR signaling pathway. Moreover, PM2.5 exposure in mice increased the level of S100A9 and ROS, leading to reduction of the ATP level. To achieve a sufficient energy supply by increasing fatty acid transfer and oxidation, activated AMPK up-regulates CD36 and CPT1, which leads to mitochondrial damage of PM2.5-exposed cells and injury or death of lung epithelial cells. siRNA-S100A9 and AMPK inhibitors significantly reduced the occurrence of cell damage.
Conclusion: These results may help to clarify biomarkers and specific mechanisms of lung tissue injury induced by PM2.5 exposure.

Keywords

Main Subjects


1. Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environmen Health Perspect 2009;117: 957-963.
2. Phosri A, Ueda K, Phung VLH, Tawatsupa B, Honda A, Takano H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci Total Environ 2019; 651: 1144-1153. 
3. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al. Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 2019; 381: 705-715. 
4. Xiong R, Jiang W, Li N, Liu B, He R, Wang B, et al. PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice. Ecotoxicol Environ Saf 2021; 221: 112433-112441. 
5. Sun Q, Ren X, Sun Z, Duan J. The critical role of epigenetic mechanism in PM2.5-induced cardiovascular diseases. Gene Environ 2021; 43: 47-54. 
6. Kampa, M, Castanas E. Human health effects of air pollution. Environ Pollut 2008; 151: 362-367.
7. Ma M, Li S, Jin H, Zhang Y, Xu J, Chen D, et al. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang. Sci Total Environ 2015; 526: 110-115.
8. Zhao L, Fang J, Tang S, Deng F, Liu X, Shen Y, et al. PM2.5 and serum metabolome and insulin resistance, potential mediation by the gut microbiome: a population-based panel study of older adults in china. Environ Health Perspect 2022; 130: 27007-27016.
9. Guo X, Lin Y, Lin Y, Zhong Y, Yu H, Huang Y, et al. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut 2022; 303: 119115-119125. 
10. Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A, et al. Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. Environ Health Perspect 2014; 122: 17-26. 
11. Zhu S, Li X, Dang B, Wu F, Wang C, Lin C. Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy. Redox Rep 2022; 27: 32-44. 
12. Wang Y, Liao S, Pan Z, Jiang S, Fan J, Yu S, et al. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis. Free Radic Biol Med 2022; 186: 1-16. 
13. Yang B, Guo J, Xiao C. Effect of PM2.5 environmental pollution on rat lung. Environ Sci Pollut Res Int 2018; 25: 36136-36146.
14. Liu G, Li Y, Zhou J, Xu J, Yang B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. Environ Toxicol Pharmacol 2022; 91: 103832. 
15. Janbandhu V, Tallapragada V, Patrick R, Li Y, Abeygunawardena D, Humphreys DT, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell 2022; 29: 281-297.
16. López M, Reche C, Pérez-Albaladejo E, Porte C, Balasch A, Monfort E, et al. E-waste dismantling as a source of personal exposure and environmental release of fine and ultrafine particles. Sci Total Environ 2022; 833: 154871-154882.
17. Karahmet E, Prnjavorac B, Bego T, Softić A, Begić L, Begić E, et al. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy. Med Glas 2021;18: 12-17. 
18. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019; 2019: 6175804-617820. 
19. Jin X, Xue B, Zhou Q, Su R, Li Z. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. J Toxicol Sci 2018; 43: 101-111.
20. Xie W, You J, Zhi C, Li L. The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J Appl Toxicol 2021; 41: 713-723.
21. Guohua F, Tieyuan Z, Xinping M, Juan X. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol Environ Saf 2021; 223: 112588-112595. 
22. Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate matter induces tissue oxinflammation: From mechanism to damage. Antioxid Redox Signal 2020; 33: 308-326. 
23. Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. Ecotoxicol Environ Saf 2022; 231: 113170-113185. 
24. Fan X, Dong T, Yan K, Ci X, Peng L. PM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagy. Redox Biol 2023; 59: 102587-102598. 
25. Li X, Yang B, Sun Y, Li S, Liu D, Zou Y, et al. Screening of antagonistic strains of respiratory origin and analysis of their bacteriostatic effects on pathogens. Microbiologyopen 2019; 8: e940-945. 
26. Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 2019; 7: 907-920. 
27. Yang D, Xing Y, Song X, Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology 2020; 159: 156-166.
28. Li X, Sun Y, An Y, Wang R, Lin H, Liu M, et al. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. Environ Pollut 2019; 246: 972-979. 
29. Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021;127: 108140-108151. 
30. Li KL, Wang BZ, Li ZP, Li YL, Liang JJ. Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection. World  J Pediatr 2019; 15: 255-261.
31. Hu T, Zhu P, Liu Y, Zhu H, Geng J, Wang B, et al. PM2.5 induces endothelial dysfunction via activating NLRP3 inflammasome. Environ Toxicol 2021; 36: 1886-1893. 
32. Zhao C, Pu W, Niu M, Wazir J, Song S, Wei L, et al. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage. Environ Sci Pollut Res Int 2022; 29: 13983-13997. 
33. Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A  2015; 112: 2817-2822. 
34. Dornhof R, Maschowski C, Osipova A, Gieré R, Seidl M, Merfort I, et al. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PloS One 2017; 12: e0180291-0180310. 
35. Liu CW, Lee TL, Chen YC, Liang CJ, Wang SH, Lue JH, et al. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol 2018;15: 4-19. 
36. Franz S, Ertel A, Engel KM, Simon JC, Saalbach A. Overexpression of S100A9 in obesity impairs macrophage differentiation via TLR4-NFkB-signaling worsening inflammation and wound healing. Theranostics 2022; 12: 1659-1682.
37. Russo A, Schürmann H, Brandt M, Scholz K, Matos ALL, Grill D, et al. Alarming and calming: Opposing roles of S100A8/S100A9 dimers and tetramers on monocytes. Adv Sci 2022; 9: e2201505-e2201519.
38. Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, et al. Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. Front Immunol 2021;12: 708770-708784. 
39. Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X, Llobet-Navàs D. Autophagy in the physiological endometrium and cancer. Autophagy 2021;17: 1077-1095. 
40. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24: 255-272. 
41. Herzig S, Shaw RJ. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nature reviews. Mol Cell Biol 2018; 19: 121-135. 
42. Xu X, Ding G, Liu C, Ding Y, Chen X, Huang X, et al. Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res 2022; 32: 54-71.
43. Mukherjee A, Bilecz AJ, Lengyel E. The adipocyte microenvironment and cancer. Cancer Metastasis Rev 2022; 41: 575-587.
44. Yang X, Lu X, Wang L, Bai L, Yao R, Jia Z, et al. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253: 127324. 
45. Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM,  Velasco-Velázquez MA. Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol 2022; 10: 1079076-1079090.
46. Ngo J, Choi DW, Stanley IA, Stiles L, Molina AJA, Chen PH, et al. Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA. EMBO J 2023; 42: e111901-111921. 
47. Miguel V, Tituaña J, Herrero JI, Herrero L, Serra D, Cuevas P, et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest 2021; 131: e140695-140712.
48. Li C, Zhang L, Qiu Z, Deng W, Wang W. Key molecules of fatty acid metabolism in gastric cancer. Biomolecules 2022; 12: 706-720.