Plinabulin exerts an anti-proliferative effect via the PI3K/AKT/mTOR signaling pathways in glioblastoma

Document Type : Original Article

Authors

1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

2 School of Medicine, Hangzhou City University, Hangzhou 310015, China

3 Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Hangzhou 310006, China

4 Department of Pharmacy, Zhejiang University of Technology, Hangzhou 310027, China

5 Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China

6 Department of Pharmacy, Ningbo No.2 Hospital, Ningbo 315010, China

10.22038/ijbms.2024.79406.17200

Abstract

Objective(s): Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.
Materials and Methods: Using the SRB and colony formation assay to observe the effect of plinabulin on glioblastoma cell viability. Wound healing and transwell migration assay were used to test the effect of plinabulin on glioblastoma cell metastatic potential. Crucial target genes were identified through RNA sequencing and bioinformatics analysis. Protein levels were evaluated in a concentration-dependent manner using western blot analysis.
Results: Plinabulin suppressed glioblastoma cell proliferation by causing cell cycle G2/M phase arrest and inhibited migration. The IC50 values were 22.20 nM in A172 cells and 20.55 nM in T98G cells. Plinabulin reduced AKT and mTOR phosphorylation. Combined with the AKT/mTOR inhibitors LY294002 and rapamycin, plinabulin decreased p-mTOR and EGFR protein levels and increased cleaved-PARP levels. Plinabulin induces autophagy, and using an autophagy inhibitor enhances plinabulin-induced cell apoptosis. This suggests that plinabulin might trigger cytoprotective autophagy in glioblastoma cells. These findings indicate that plinabulin hinders glioblastoma growth and induces protective autophagy via the PI3K/AKT/mTOR pathway. Additionally, plinabulin combined with erlotinib showed greater cytotoxic efficacy than either drug alone in glioblastoma cells in vitro.
Conclusion: Our study provides new insights into the efficacy of plinabulin against glioblastoma and highlights the potential clinical utility of combining plinabulin with EGFR inhibitors as a chemotherapy strategy.

Keywords

Main Subjects


1. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: A review. JAMA 2023; 329: 574-587.
2. Li hr, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol 2018; 11:70-85.
3. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics 2020; 10: 3351-3365.
4. Zhang D, Li AM, Hu G, Huang M, Yang F, Zhang L, et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab 2023; 35:517-534 e518.
5. Mita MM, Spear MA, Yee LK, Mita AC, Heath EI, Papadopoulos KP, et al. Phase 1 first-in-human trial of the vascular disrupting agent plinabulin(NPI-2358) in patients with solid tumors or lymphomas. Clin Cancer Res 2010; 16: 5892-5899.
6. La Sala G, Olieric N, Sharma A, Viti F, Perez FDB, Huang L, et al. Structure, thermodynamics, and kinetics of plinabulin binding to two tubulin isotypes. Chem 2019; 5: 2969-2986.
7. Blayney DW, Mohanlal R, Adamchuk hr, Kirtbaya DV, Chen M, Du L, et al. Efficacy of plinabulin vs pegfilgrastim for prevention of docetaxel-induced neutropenia in patients with solid tumors: A randomized clinical trial. JAMA Netw Open 2022; 5: e2145446.
8. Spear MA, LoRusso P, Mita A, Mita M. Vascular disrupting agents (VDA) in oncology: advancing towards new therapeutic paradigms in the clinic. Curr Drug Targets 2011; 12: 2009-2015.
9. Blayney DW, Zhang Q, Feng J, Zhao Y, Bondarenko I, Vynnychenko I, et al. Efficacy of plinabulin vs pegfilgrastim for prevention of chemotherapy-induced neutropenia in adults with non-small cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol 2020; 6: e204429.
10. Millward M, Mainwaring P, Mita A, Federico K, Lloyd GK, Reddinger N, et al. Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel. Invest New Drugs 2012; 30: 1065-1073.
11. Singh AV, Bandi M, Raje N, Richardson P, Palladino MA, Chauhan D, et al. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117: 5692-5700.
12. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol 2019; 59:125-132.
13. Ma L, Zhang R, Li D, Qiao T, Guo X. Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway. Chem Biol Interact 2021; 349: 109659.
14. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 2023; 24: 560-575.
15. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19:12-27.
16. Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, et al. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed Pharmacother 2020; 125: 109895-109908.
17. Simpson JE, Gammoh N. The impact of autophagy during the development and survival of glioblastoma. Open Biol 2020; 10: 200184-200197.
18. Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21: 115-123.
19. Kiseleva LN, Kartashev AV, Vartanyan NL, Pinevich AA, Samoilovich MP. Characteristics of A172 and T98g cell lines. Tsitologiia 2016; 58: 349-355.
20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler hr, Cherry JM, et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet 2000; 25: 25-29.
21. Gene Ontology C, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The gene ontology knowledgebase in 2023. Genetics 2023; 224: 1-14.
22. Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47:W357-W364.
23. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54:1.30.31-1.30.33.
24. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel hr, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25:18-27.
25. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017; 19: 649-658.
26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498-2504.
27. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51: D638-D646.
28. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 2022; 1:e36-41.
29. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets. Genomics Proteomics Bioinformatics 2022; 20: 587-596.
30. Zheng S, Aldahdooh J, Shadbahr T, Wang Y, Aldahdooh D, Bao J, et al. DrugComb update: A more comprehensive drug sensitivity data repository and analysis portal. Nucleic Acids Res 2021; 49:W174-W184.
31. Jimenez PC, Wilke DV, Branco PC, Bauermeister A, Rezende-Teixeira P, Gaudencio SP, et al. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol 2020; 177: 3-27.
32. Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, et al. NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 2006; 17: 25-31.
33. Honda-Uezono A, Kaida A, Michi Y, Harada K, Hayashi Y, Hayashi Y, et al. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Biochem Biophys Res Commun 2012; 428: 224-229.
34. Okuyama K, Kaida A, Hayashi Y, Hayashi Y, Harada K, Miura M. KPU-300, a novel benzophenone-diketopiperazine-type anti-microtubule agent with a 2-pyridyl structure, is a potent radiosensitizer that synchronizes the cell cycle in early M phase. PLoS One 2015; 10: e0145995-146012.
35. Yan hr, Jiang J, Du A, Gao J, Zhang D, Song L. Genistein enhances radiosensitivity of human hepatocellular carcinoma cells by inducing G2/M arrest and apoptosis. Radiat Res 2020; 193: 286-300.
36. Fruman DA, Chiu hr, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 2017; 170: 605-635.
37. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22: 138-174.
38. Semba S, Itoh N, Ito M, Youssef EM, Harada M, Moriya T, et al. Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 2002; 8: 3824-3831.
39. Powe E, Parschauer D, Istifan J, Lin S, Duan hr, Gryka R, et al. Luteolin enhances erlotinib’s cell proliferation inhibitory and apoptotic effects in glioblastoma cell lines. Front Pharmacol 2022; 13: 952169-952179.
40. Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17:53-61.
41. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3: 75ra26.
42. Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM, et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 2006; 116: 2695-2706.
43. Xu Y, Afify SM, Du J, Liu B, Hassan G, Wang Q, et al. The efficacy of PI3Kgamma and EGFR inhibitors on the suppression of the characteristics of cancer stem cells. Sci Rep 2022; 12: 347-357.
44. Horwitz SM, Koch R, Porcu P, Oki Y, Moskowitz A, Perez M, et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 2018; 131: 888-898.
45. Gu DY, Zhang MM, Li J, Zhou YB, Sheng R. Development of PI3Kgamma selective inhibitors: The strategies and application. Acta Pharmacol Sin 2024; 45:238-247.
46. Li J, Kaneda MM, Ma J, Li M, Shepard RM, Patel K, et al. PI3Kgamma inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proc Natl Acad Sci U S A 2021; 118-129.
47. Natoli M, Herzig P, Pishali Bejestani E, Buchi M, Ritschard R, Lloyd GK, et al. Plinabulin, a distinct microtubule-targeting chemotherapy, promotes M1-like macrophage polarization and anti-tumor immunity. Front Oncol 2021; 11: 644608-644621.
48. Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, et al. GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep 2019; 28: 3367-3380 e3368.
49. Liu J, Chen M, Gao X, Liu X, Zhao J, Pan R, et al. Study protocol of KeyPemls-004: A phase 2 study of pembrolizumab in combination with plinabulin and docetaxel in previously treated patients with metastatic non-small cell lung cancer and progressive disease (PD) after immunotherapy (PD-1/PD-L1 inhibitor) alone or in combination with platinum-doublet chemotherapy. Thorac Cancer 2023; 14:773-778.