1. Lerner GB, Virmani S, Henderson JM, Francis JM, Beck LH, Jr. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney Int 2021; 100:289-300.
2. Li J, Cui Z, Long J, Huang W, Wang J, Zhang H, et al. Primary glomerular nephropathy among hospitalized patients in a national database in China. Nephrol Dial Transplant 2018; 33:2173-2181.
3. Hou JH, Zhu HX, Zhou ML, Le WB, Zeng CH, Liang SS, et al. Changes in the spectrum of kidney diseases: An analysis of 40,759 biopsy-proven cases from 2003 to 2014 in China. Kidney Dis (Basel) 2018; 4:10-19.
4. Narasimhan B, Chacko B, John GT, Korula A, Kirubakaran MG, Jacob CK. Characterization of kidney lesions in Indian adults: towards a renal biopsy registry. J Nephrol 2006; 19:205-210.
5. Polito MG, de Moura LA, Kirsztajn GM. An overview on frequency of renal biopsy diagnosis in Brazil: clinical and pathological patterns based on 9,617 native kidney biopsies. Nephrol Dial Transplant 2010; 25:490-496.
6. Rojas-Rivera JE, Ortiz A, Fervenza FC. Novel treatments paradigms: Membranous nephropathy. Kidney Int Rep 2023; 8:419-431.
7. Hoxha E, Reinhard L, Stahl RAK. Membranous nephropathy: New pathogenic mechanisms and their clinical implications. Nat Rev Nephrol 2022; 18:466-478.
8. Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 2020; 20:143-157.
9. Lushchak VI, Storey KB. Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. EXCLI J 2021; 20:956-967.
10. Komada T, Muruve DA. The role of inflammasomes in kidney disease. Nat Rev Nephrol 2019; 15:501-520.
11. Wang H, Lv D, Jiang S, Hou Q, Zhang L, Li S, et al. Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis 2022; 13:281-292.
12. Houghton CA. Sulforaphane: Its “Coming of Age” as a clinically relevant nutraceutical in the prevention and treatment of chronic disease. Oxid Med Cell Longev 2019; 2019:2716870.
13. Monteiro EB, Ajackson M, Stockler-Pinto MB, Guebre-Egziabher F, Daleprane JB, Soulage CO. Sulforaphane exhibits potent renoprotective effects in preclinical models of kidney diseases: A systematic review and meta-analysis. Life Sci 2023; 322:121664.
14. Cuevas S, Pelegrín P. Pyroptosis and redox balance in kidney diseases. Antioxid Redox Signal 2021; 35:40-60.
15. Salant DJ, Cybulsky AV. Experimental glomerulonephritis. Methods Enzymol 1988; 162:421-461.
16. White KE, Bilous RW. Estimation of podocyte number: a comparison of methods. Kidney Int 2004; 66:663-667.
17. Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103.
18. Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, et al. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol 2023; 54:313-327.
19. Yu Y, Dong H, Sun J, Li B, Chen Y, Feng M, et al. Hepatitis B virus X mediates podocyte pyroptosis by regulating the ROS/NLRP3 signaling pathway in hepatitis B virus-associated glomerulonephritis. Iran J Basic Med Sci 2022; 25:103-109.
20. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H2181-2190.
21. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019; 2019:5080843.
22. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules 2021; 11:1144-1172.
23. Guo H, Bechtel-Walz W. The interplay of autophagy and oxidative stress in the kidney: What do we know? Nephron 2023; 147:627-642.
24. Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, et al. Novel insight into ferroptosis in kidney diseases. Am J Nephrol 2023; 54:184-199.
25. Liu H, Cheng H, Wang H, Wang Q, Yuan J. Crocin improves the renal autophagy in rat experimental membranous nephropathy via regulating the SIRT1/Nrf2/HO-1 signaling pathway. Ren Fail 2023; 45:2253924.
26. Liu Y, Uruno A, Saito R, Matsukawa N, Hishinuma E, Saigusa D, et al. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biol 2022; 58:102525.
27. Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The crosstalk between Nrf2 and inflammasomes. Int J Mol Sci 2018; 19:562-580.
28. Zhang D, Mao F, Wang S, Wu H, Wang S, Liao Y. Role of transcription factor Nrf2 in pyroptosis in spinal cord injury by regulating GSDMD. Neurochem Res 2023; 48:172-187.
29. Cardozo L, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, et al. Cruciferous vegetables: Rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2021; 79:1204-1224.
30. Lv D, Jiang S, Zhang M, Zhu X, Yang F, Wang H, et al. Treatment of membranous nephropathy by disulfiram through inhibition of podocyte pyroptosis. Kidney Dis (Basel) 2022; 8:308-318.
31. Greaney AJ, Maier NK, Leppla SH, Moayeri M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 2016; 99:189-199.