1. Hardt SE, Sadoshima J. Negative regulators of cardiac hypertrophy. Cardiovasc Res 2004; 63:500-509.
2. Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363.
3. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, 2nd, Kitsis RN, et al. Mitochondrial function, biology, and role in disease: A scientific statement from the american heart association. Circ Res 2016; 118: 1960-1991.
4. Wu J, Lu J, Huang J, You J, Ding Z, Ma L, et al. Variations in energy metabolism precede alterations in cardiac structure and function in hypertrophic preconditioning. Front Cardiovasc Med 2020; 7: 602100-602109.
5. Roe AT, Aronsen JM, Skardal K, Hamdani N, Linke WA, Danielsen HE, et al. Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovasc Res 2017; 113: 1161-1172.
6. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-4635.
7. Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci 2016; 73: 2871-2896.
8. Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease. J Biol Chem 2012; 287: 42436-42443.
9. Yue Z, Ma Y, You J, Li Z, Ding Y, He P, et al. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res 2016; 347: 261-273.
10. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 2013; 18: 920-933.
11. Xiao ZP, Lv T, Hou PP, Manaenko A, Liu Y, Jin Y, et al. Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice. Stroke 2021; 52: 4043-4053.
12. Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A 2016; 113: 4320-4325.
13. Gertz M, Steegborn C. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta 2010; 1804:1658-1665.
14. Liu B, Che W, Zheng C, Liu W, Wen J, Fu H, et al. SIRT5: A safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 2013; 32: 1050-1059.
15. Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2015; 88: 73-81.
16. Herzog B, Hallberg M, Seth A, Woods A, White R, Parker MG. The nuclear receptor cofactor, receptor-interacting protein 140, is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor. Mol Endocrinol 2007; 21: 2687-2697.
17. Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, Fritah A, et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab 2007; 6: 236-245.
18. Chen Y, Chen S, Yue Z, Zhang Y, Zhou C, Cao W, et al. Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats. Transl Res 2017; 180: 91-102.
19. Chen Y, Wang Y, Chen J, Chen X, Cao W, Chen S, et al. Roles of transcriptional corepressor RIP140 and coactivator PGC-1alpha in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Mol Cell Endocrinol 2012; 362: 11-18.
20. Fritah A, Steel JH, Nichol D, Parker N, Williams S, Price A, et al. Elevated expression of the metabolic regulator receptor-interacting protein 140 results in cardiac hypertrophy and impaired cardiac function. Cardiovasc Res 2010; 86: 443-451.
21. Yamamoto T, Maurya SK, Pruzinsky E, Batmanov K, Xiao Y, Sulon SM, et al. RIP140 deficiency enhances cardiac fuel metabolism and protects mice from heart failure. J Clin Invest 2023; 133-146.
22. Buler M, Aatsinki SM, Izzi V, Uusimaa J, Hakkola J. SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J 2014; 28: 3225-3237.
23. Zhou SG, Zhou SF, Huang HQ, Chen JW, Huang M, Liu PQ. Proteomic analysis of hypertrophied myocardial protein patterns in renovascularly hypertensive and spontaneously hypertensive rats. J Proteome Res 2006; 5: 2901-2908.
24. Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119: 1905-1914.
25. Ng SM, Neubauer S, Rider OJ. Myocardial metabolism in heart failure. Curr Heart Fail Rep 2023; 20: 63-75.
26. Wasyluk W, Nowicka-Stazka P, Zwolak A. Heart metabolism in sepsis-induced cardiomyopathy-unusual metabolic dysfunction of the heart. Int J Environ Res Public Health 2021; 18: 7598-7618.
27. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol 2018; 15: 457-470.
28. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 2018; 128: 3716-3726.
29. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ Res 2013; 113: 709-724.
30. Long Q, Yang K, Yang Q. Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Am J Cardiovasc Dis 2015; 5: 19-32.
31. Lu X, Yang P, Zhao X, Jiang M, Hu S, Ouyang Y, et al. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp Cell Res 2019; 382: 111483.
32. Meng T, Li FS, Xu D, Jing J, Li Z, Maimaitiaili M, et al. Yiqigubiao pill treatment regulates Sirtuin 5 expression and mitochondrial function in chronic obstructive pulmonary disease. J Thorac Dis 2024; 16: 2326-2340.
33. Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, et al. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 2016; 17: 811-822.
34. Wei C, Shi M, Dong S, Li Z, Zhao B, Liu D, et al. SIRT5-related lysine demalonylation of GSTP1 contributes to cardiomyocyte pyroptosis suppression in diabetic cardiomyopathy. Int J Biol Sci 2024; 20: 585-605.
35. You J, Yue Z, Chen S, Chen Y, Lu X, Zhang X, et al. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. Acta Physiol (Oxf) 2017; 220: 58-71.
36. Zhang L, Chen Y, Yue Z, He Y, Zou J, Chen S, et al. The p65 subunit of NF-kappaB involves in RIP140-mediated inflammatory and metabolic dysregulation in cardiomyocytes. Arch Biochem Biophys 2014; 554: 22-27.