1. Liu C, Li Y, Xing X, Zhuang J, Wang J, Wang C, et al. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. Mol Ther Nucleic Acids 2022; 28:670-684.
2. Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol 2021; 72:136-145.
3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747-752.
4. Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 2007; 110:876-884.
5. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: High incidence of central nervous system metastases. Cancer 2008; 113:2638-2645.
6. Kesireddy M, Elsayed L, Shostrom VK, Agarwal P, Asif S, Yellala A, et al. Overall survival and prognostic factors in metastatic triple-negative breast cancer: A National Cancer Database Analysis. Cancers (Basel) 2024; 16:1791-1803.
7. Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143-205.
8. Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292.
9. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9:402-413.
10. Olcum M, Tufekci KU, Genc S. MicroRNAs in genetic etiology of human diseases. Methods Mol Biol 2022; 2257:255-268.
11. Butte A. The use and analysis of microarray data. Nat Rev Drug Discov 2002; 1:951-960.
12. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9:559-571.
13. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25:18-27.
14. Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Børresen-Dale AL, et al. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res 2015; 21:1207-1214.
15. Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, et al. Triple negative breast cancer profile, from gene to microrna, in relation to ethnicity. Cancers (Basel) 2019; 11:363-387.
16. Song N, Liang B, Wang D. The function of MiR-21 expression differences and pathogenesis on familial and triple negative breast Cancer serum. Pak J Pharm Sci 2016; 29:679-684.
17. Thakur S, Grover RK, Gupta S, Yadav AK, Das BC. Identification of specific mirna signature in paired sera and tissue samples of indian women with triple negative breast cancer. PLoS One 2016; 11:e0158946.
18. Pollard J, Burns PA, Hughes TA, Ho-Yen C, Jones JL, Mukherjee G, et al. Differential expression of micrornas in breast cancers from four different ethnicities. Pathobiology 2018; 85:220-226.
19. Seal RL, Braschi B, Gray K, Jones TEM, Tweedie S, Haim-Vilmovsky L, et al. Genenames.org: The HGNC resources in 2023. Nucleic Acids Res 2023; 51:D1003-D1009.
20. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101:6062-6067.
21. Konecny GE. Cyclin-dependent kinase pathways as targets for women’s cancer treatment. Curr Opin Obstet Gynecol 2016; 28:42-48.
22. Yamamoto T, Kanaya N, Somlo G, Chen S. Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ER-negative breast cancer. Breast Cancer Res Treat 2019; 174:615-625.
23. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: The TNT Trial. Nat Med 2018; 24:628-637.
24. Ibrahim YH, García-García C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2012; 2:1036-1047.
25. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 2017; 389:2430-2442.
26. Wenzel ES, Singh ATK. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo 2018; 32:1-5.
27. Joglekar AP. A cell biological perspective on past, present and future investigations of the spindle assembly checkpoint. Biology (Basel) 2016; 5:44-62.
28. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38:1043-1048.
29. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting mitosis in cancer: Emerging strategies. Mol Cell 2015; 60:524-536.
30. Repo H, Löyttyniemi E, Kurki S, Kallio L, Kuopio T, Talvinen K, et al. A prognostic model based on cell-cycle control predicts outcome of breast cancer patients. BMC Cancer 2020; 20:558-565.
31. Dashti S, Taheri M, Ghafouri-Fard S. An in-silico method leads to recognition of hub genes and crucial pathways in survival of patients with breast cancer. Sci Rep 2020; 10:18770-18782.
32. Ren Y, Deng R, Zhang Q, Li J, Han B, Ye P. Bioinformatics analysis of key genes in triple negative breast cancer and validation of oncogene PLK1. Ann Trans Med 2020; 8:1637-1651.
33. Agarwal S, Parija M, Naik S, Kumari P, Mishra SK, Adhya AK, et al. Dysregulated gene subnetworks in breast invasive carcinoma reveal novel tumor suppressor genes. Sci Rep 2024; 14:15691.
34. Williams GH, Stoeber K. The cell cycle and cancer. J Pathol 2012; 226:352-364.
35. Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42-59.
36. Jeon H, Kim JH, Lee E, Jang YJ, Son JE, Kwon JY, et al. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 2016; 7:67223-67234.
37. Zhang X, Bai W. Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother Pharmacol 2016; 78:655-659.
38. Najarro EH, Huang J, Jacobo A, Quiruz LA, Grillet N, Cheng AG. Dual regulation of planar polarization by secreted Wnts and Vangl2 in the developing mouse cochlea. Development 2020; 147:dev191981.
39. Hatakeyama J, Wald JH, Printsev I, Ho HY, Carraway KL, 3rd. Vangl1 and Vangl2: Planar cell polarity components with a developing role in cancer. Endocr Relat Cancer 2014; 21:R345-R356.
40. Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, et al. Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun 2016; 7:10318.
41. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 2003; 12:1087-1099.
42. Boudreau HE, Broustas CG, Gokhale PC, Kumar D, Mewani RR, Rone JD, et al. Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int J Mol Med 2007; 19:29-39.
43. Li P, Xu T, Zhou X, Liao L, Pang G, Luo W, et al. Downregulation of miRNA-141 in breast cancer cells is associated with cell migration and invasion: Involvement of ANP32E targeting. Cancer Med 2017; 6:662-672.
44. Landemaine T, Jackson A, Bellahcène A, Rucci N, Sin S, Abad BM, et al. A six-gene signature predicting breast cancer lung metastasis. Cancer Res 2008; 68:6092-6099.
45. Xiong Z, Ye L, Zhenyu H, Li F, Xiong Y, Lin C, et al. ANP32E induces tumorigenesis of triple-negative breast cancer cells by upregulating E2F1. Mol Oncol 2018; 12:896-912.
46. Ruff GL, Murphy KE, Smith ZR, Vertino PM, Murphy PJ. Subtype-independent anp32e reduction during breast cancer progression in accordance with chromatin relaxation. BMC Cancer 2021; 21:1342-1356.
47. Piekny AJ, Maddox AS. The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 2010; 21:881-891.
48. Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J, et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem 2015; 398:11-19.
49. Magnusson K, Gremel G, Rydén L, Pontén V, Uhlén M, Dimberg A, et al. ANLN is a prognostic biomarker independent of Ki-67 and essential for cell cycle progression in primary breast cancer. BMC Cancer 2016; 16:904-916.
50. Maryam A, Chin YR. ANLN enhances triple-negative breast cancer stemness through twist1 and bmp2 and promotes its spheroid growth. Front Mol Biosci 2021; 8:700973.