Targeting dipeptidyl peptidase-8/9 to combat inflammation-induced osteoclastogenesis in RAW264.7 macrophages and analysis of anti-osteoclastogenesis potential of chrysin

Document Type : Original Article

Authors

1 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi – 110062, India

2 Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi – 110062, India

3 Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, Hamdard, New Delhi – 110062, India

Abstract

Objective(s): Osteoclasts drive bone resorption under inflammation, with cytokines promoting osteoclastogenesis. The role of proline enzymes like dipeptidyl peptidase-8 and 9 (DPP-8/9) in this process remains unclear. This study aimed to explore the DPP-8/9 involvement in inflammation-driven osteoclastogenesis using the RAW264.7 macrophage model.
Materials and Methods: Receptor activator of nuclear factor-κB ligand (RANKL) and lipopolysaccharide (LPS) induced osteoclastogenesis, raising interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and IL-23 levels. Using RAW264.7 cells, DPP-8/9 protein and tartrate-resistant acid phosphatase (TRAPc) were assayed. Antibodies for cluster of differentiation (CD86 and CD206) were used to analyze macrophage polarization, while molecular docking was used to assess flavonoid binding to DPP-8/9. Western blot confirmed DPP-8/9 expression in treated macrophages.
Results: Administering RANKL and LPS increased IL-6 and TNF-α levels, significantly promoting osteoclastogenesis in RAW264.7 macrophages. This treatment also elevated the levels of the inflammatory macrophage marker IL-23. Osteoclast formation was confirmed by measuring TRAPc levels in the culture. Analysis of the cell supernatant revealed elevated DPP-8/9 levels in the RANKL+LPS group. Inhibition of DPP-8/9 with 1G244 decreased inflammatory cytokines and TRAPc levels in the cell culture. Molecular docking analysis of various flavonoids identified chrysin as a potential molecule with sufficient binding energy against DPP-8/9, a finding confirmed by blotting assay.
Conclusion: This study emphasizes the involvement of DPP-8/9 in inflammatory osteoclastogenesis in RAW264.7 macrophages. Inhibition of DPP-8/9 reduced osteoclastogenesis markers and inflammatory cytokines levels, indicating decreased osteoclast formation. Additionally, chrysin demonstrated potential as an anti-DPP-8/9 agent, highlighting its possible role in future therapeutic strategies targeting inflammation-induced osteoclastogenesis. 

Keywords

Main Subjects


1. Weitzmann MN. Bone and the immune system. Physiol Behav 2017;45:911–924. 
2. Tsukasaki M, Takayanagi H. Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019;19:626–642. 
3. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017;97:1295–1349. 
4.    Salari N, Ghasemi H, Mohammadi L, Behzadi M hasan, Rabieenia E, Shohaimi S, et al. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021;16:1–20. 
5. The Economist Intelligence Unit. Demystifying ageing lifting the burden of fragility fractures and osteoporosis in Asia-Pacific. 2017. 
6. Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022;5:1667–1698. 
7. Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK. Osteoimmunology: The nexus between bone and immune system. Front Biosci 2018;23:464–492. 
8. Khoury MI. Osteoporosis and inflammation: Cause to effect or comorbidity? Int J Rheum Dis 2024;27:e15357. 
9. Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of osteoporosis: A mini-review. Gerontology 2016;62:128–137. 
10.    Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, et al. Macrophage-osteoclast associations: Origin, polarization, and subgroups. front immunol 2021;12:778078. 
11. Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and osteoporosis: A review. Nutrients 2020;12:1–16. 
12. Michalski MN, McCauley LK. Macrophages and skeletal health. Pharmacol Ther 2017;174:43–54. 
13. Madel MB, Ibáñez L, Wakkach A, De Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol 2019;10:1408-1425. 
14.    Chen SY, Tsai TC, Li YT, Ding YC, Wang CT, Hsieh JL, et al. Interleukin-23 mediates osteoclastogenesis in collagen-induced arthritis by modulating microRNA-223. Int J Mol Sci 2022;23:9718-9729.
15. Allard-Chamard H, Carrier N, Dufort P, Durand M, De Brum-Fernandes AJ, Boire G, et al. Osteoclasts and their circulating precursors in rheumatoid arthritis: Relationships with disease activity and bone erosions. Bone Reports 2020;12:100282-100291. 
16. Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of innate immune cells in osteoporosis. Front Immunol 2021;12:687037-687048. 
17. Verron E, Bouler JM. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders? Drug Discov Today 2014;19:312–319. 
18. Peris P, Monegal A, Guañabens N. Bisphosphonates in inflammatory rheumatic diseases. Bone 2021;146:115887. 
19. Ponzetti M, Rucci N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne) 2019;10:1–13. 
20.    Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022;13:1–17. 
21. Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V. Proteinases and their receptors in inflammatory arthritis: An overview. Nat Rev Rheumatol 2018;14:170–180. 
22. Wu JJ, Tang HK, Yeh TK, Chen CM, Shy HS, Chu YR, et al. Biochemistry, pharmacokinetics, and toxicology of a potent and selective DPP8/9 inhibitor. Biochem Pharmacol 2009;78:203–210. 
23. Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velázquez T. Structure–activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules 2018;23:1368-1378. 
24. Matheeussen V, Waumans Y, Martinet W, Van Goethem S, Van Der Veken P, Scharpé S, et al. Dipeptidyl peptidases in atherosclerosis: Expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol 2013;108:1–14. 
25. Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The dipeptidyl peptidase family, prolyl oligopeptidase and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol 2015;6:387-404. 
26. Waumans Y, Vliegen G, Maes L, Rombouts M, Declerck K, Van Der Veken P, et al. The dipeptidyl peptidases 4, 8, and 9 in mouse monocytes and macrophages: DPP8/9 inhibition attenuates M1 macrophage activation in mice. Inflammation 2016;39:413–424. 
27. Suski M, Wiśniewska A, Kuś K, Kiepura A, Stachowicz A, Stachyra K, et al. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol 2020;127:193–202. 
28. Buljevic S, Detel D, Pugel EP, Varljen J. The effect of CD26-deficiency on dipeptidyl peptidase 8 and 9 expression profiles in a mouse model of Crohn’s disease. J Cell Biochem. 2018;119:6743–6755. 
29. Chowdhury S, Chen Y, Yao TW, Ajami K, Wang XM, Popov Y, et al. Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver. World J Gastroenterol 2013;19:2883–2893. 
30. Wilson CH, Abbott CA. Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines. Int J Oncol 2012;41:919–932. 
31. Torrecillas-Baena B, Camacho-Cardenosa M, Quesada-Gómez JM, Moreno-Moreno P, Dorado G, Gálvez-Moreno MÁ, et al. Non-specific inhibition of dipeptidyl peptidases 8/9 by dipeptidyl peptidase 4 inhibitors negatively affects mesenchymal stem cell differentiation. J Clin Med 2023;12:4632-4651. 
32. Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. Anti-oxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol 2018;32:e22002. 
33. Ahmad SS, Ahmed F, Alam MM, Ahmad S, Khan MA. Unravelling the role of dipeptidyl peptidases-8/9 (DPP-8/9) in inflammatory osteoporosis: a comprehensive study investigating chrysin as a potential anti-osteoporotic agent. J Pharm Pharmacol 2024;9:1–15. 
34. Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A guide to in silico drug design. Pharmaceutics 2023;15:49-100. 
35. Bhuvaneshwari S, Sankaranarayanan K. Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach. SAR QSAR Environ Res 2019;30:81–108. 
36. Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F. Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: Timing and behavior. Biology (Basel) 2021;10:1–21. 
37. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-Cell analysis. Int J Mol Sci 2021;22:12827-12856. 
38. Smith TD, Tse MJ, Read EL, Liu WF. Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol 2016;8:946–955. 
39. Shukla P, Mansoori MN, Singh D. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions. Bone 2018;110:84–95. 
40. Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci 2020;21:5169-5192. 
41. Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, et al. Anti-inflammatory activities of flavonoid derivates. ADMET DMPK. 2023;11:331–359. 
42. Ahmad SS, Ahmed F, Ali R, Ghoneim MM, Alshehri S, Najmi AK, et al. Immunology of osteoporosis: Relevance of inflammatory targets for the development of novel interventions. Immunotherapy 2022;14:815–831. 
43. Toker H, Ozdemir H, Balci Yuce H, Goze F. The effect of boron on alveolar bone loss in osteoporotic rats. J Dent Sci 2016;11:331–337. 
44. Xu F, Teitelbaum SL. Osteoclasts: New Insights. Bone Res 2013;1:11–26. 
45. Lu L, Lu L, Zhang J, Li J. Potential risks of rare serious adverse effects related to long-term use of bisphosphonates: An overview of systematic reviews. J Clin Pharm Ther 2020;45:45–51. 
46.    Hwang J, Zheng M, Wiraja C, Cui M, Yang L, Xu C. Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. Nanoscale Adv 2020;2:5254–5262. 
47.    Kong L, Smith W, Hao D. Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli. J Cell Mol Med 2019;23:3077–3087. 
48. Han R, Wang X, Bachovchin W, Zukowska Z, Osborn JW. Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation. Sci Rep 2015;5:1–11. 
49.    Kikuchi S, Wada A, Kamihara Y, Okazaki K, Jawaid P, Rehman MU, et al. DPP8 selective inhibitor tominostat as a novel and broad-spectrum anticancer agent against hematological malignancies. Cells 2023;12:1100-1114. 
50. Khabipov A, Käding A, Liedtke KR, Freund E, Partecke LI, Bekeschus S. RAW 264.7 macrophage polarization by pancreatic cancer cells - A model for studying tumour-promoting macrophages. Anticancer Res 2019;39:2871–2882. 
51. Kelly B, O’Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015;25:771–784. 
52. Cheng Y, Liu H, Li J, Ma Y, Song C, Wang Y, et al. Evaluation of culture conditions for osteoclastogenesis in RAW264.7 cells. PLoS One 2022;17:1–9. 
53. Deng C, Zhang Q, He P, Zhou B, He K, Sun X, et al. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun 2021;12:1–15. 
54. Wu Z, Li C, Chen Y, Liu Q, Li N, He X, et al. Chrysin protects against titanium particle-induced osteolysis by attenuating osteoclast formation and function by inhibiting NF-κB and MAPK signaling. Front Pharmacol 2022;13:1–11. 
55. Yao W, Cheng J, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL, Lu G. Toxicological evaluation of a flavonoid, chrysin: Morphological, behavioral, biochemical and histopathological assessments in rats. Drug Chem Toxicol 2021;44:601–612. 
56. Walle T, Otake Y, Brubaker JA, Walle UK, Halushka PV. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol 2001;51:143–146.