1. Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of anti-oxidants. Environ Health Rev 2021; 36: 279-295.
2. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003; 33: 105-136.
3. Zhu W, Fung PC. The roles played by crucial free radicals like lipid free radicals, nitric oxide, and enzymes NOS and NADPH in CCl4-induced acute liver injury of mice. Free Radic Biol Med 2000; 29: 870-880.
4. Beddowes EJ, Faux SP, Chipman JK. Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology 2003; 187: 101-115.
5. Simeonova PP, Gallucci RM, Hulderman T, Wilson R, Kommineni C, Rao M, et al. The role of tumor necrosis factor-α in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 2001; 177: 112-120.
6. Monserrat-Mesquida M, Quetglas-Llabrés M, Abbate M, Montemayor S, Mascaró CM, Casares M, et al. Oxidative stress and proinflammatory status in patients with nonalcoholic fatty liver disease. Antioxidants 2020; 9: 759-773.
7. Zhang G, Wang X, Chung TY, Ye W, Hodge L, Zhang L, et al. Carbon tetrachloride (CCl4) accelerated development of nonalcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH) in MS-NASH mice fed western diet supplemented with fructose (WDF). BMC Gastroenterol 2020; 20: 339-351.
8. Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Intl J Mol Sci 2023; 24: 9671-9694.
9. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292: 76-83.
10. Hayashi H, Sakai T. Biological significance of local TGF-β activation in liver diseases. Front Physiol 2012; 3: 12-22.
11. Kurzepa J, Mdro A, Czechowska G, Kurzepa J, Celiński K, Kazmierak W, et al. Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary Pancreat Dis Int 2014; 13: 570-579.
12. Wei L, Chen Q, Guo A, Fan J, Wang R, Zhang H. Asiatic acid attenuates CCl4-induced liver fibrosis in rats by regulating the PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways. Int Immunopharmacol 2018; 60: 1-8.
13. Dong Z, Zhuang Q, Ning M, Wu S, Lu L, Wan X. Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells. Ann Transl Med 2020; 8: 168-179.
14. Ogaly HA, Aldulmani SA, Al-Zahrani FA, Abd-Elsalam RM. D-carvone attenuates CCl4-induced liver fibrosis in rats by inhibiting oxidative stress and TGF-ß1/SMAD3 signaling pathway. Biology 2022; 11: 739-758.
15. Abdelghffar EA, Obaid WA, Alamoudi MO, Mohammedsaleh ZM, Annaz H, Abdelfattah MA, et al. Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomed Pharmacother 2022; 148: 112738.
16. Wang T, Lu Z, Sun GF, He KY, Chen ZP, Qu XH, et al. Natural products in liver fibrosis management: A five-year review. Curr Med Chem 2024; 31: 5061-5082.
17. Allenspach M, Steuer C. α-Pinene: A never-ending story. Phytochemistry 2021; 190: 112857.
18. Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, et al. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39: 1596-1606.
19. Xanthis V, Fitsiou E, Voulgaridou GP, Bogadakis A, Chlichlia K, Galanis A, et al. Anti-oxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. chia and its major components myrcene and α-pinene. Antioxidants 2021; 10: 127-145.
20. Khan‐Mohammadi‐Khorrami MK, Asle‐Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer’s disease rat model. J Biochem Mol Toxicol 2022; 36: e23006.
21. Santos ES, de Sousa Machado ST, Rodrigues FB, da Silva YA, Matias LC, Lopes MJ, et al. Potential anti-inflammatory, hypoglycemic, and hypolipidemic activities of alpha-pinene in diabetic rats. Process Biochem 2023; 126: 80-86.
22. Noroozi F, Asle-Rousta M, Amini R, Sahraeian Z. Alpha-pinene alleviates CCl4-induced renal and testicular injury in rats by targeting oxidative stress, inflammation, and apoptosis. Iran J Basic Med Sci 2024; 27: 678-684.
23. Hsouna AB, Dhibi S, Dhifi W, Mnif W, Hfaiedh N. Chemical composition and hepatoprotective effect of essential oil from Myrtus communis L. flowers against CCL4-induced acute hepatotoxicity in rats. RSC Adv 2019; 9: 3777-3787.
24. Mohamed ME, Younis NS, El-Beltagi HS, Mohafez OM. The synergistic hepatoprotective activity of rosemary essential oil and curcumin: The role of the MEK/ERK pathway. Molecules 2022; 27: 8910-8927.
25. Wang K, Yang X, Wu Z, Wang H, Li Q, Mei H, et al. Dendrobium officinale polysaccharide protected CCl4-induced liver fibrosis through intestinal homeostasis and the LPS-TLR4-NF-κB signaling pathway. Front Pharmacol 2020; 11: 240-253.
26. ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, et al. Effect of empagliflozin on thioacetamide-induced liver injury in rats: role of AMPK/SIRT-1/HIF-1α pathway in halting liver fibrosis. Antioxidants 2022; 11: 2152-2167.
27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275.
28. Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol Academic press; 1990.p. 421-431.
29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402-408.
30. Wang Y, Yang Z, Wei Y, Li X, Li S. Apolipoprotein A4 regulates the immune response in carbon tetrachloride-induced chronic liver injury in mice. Int Immunopharmacol 2021; 90: 107222.
31. Satou T, Kasuya H, Maeda K, Koike K. Daily inhalation of α‐pinene in mice: Effects on behavior and organ accumulation. Phytother Res 2014; 28: 1284-1247.
32. Eidi A, Mortazavi P, Moghadam JZ, Mardani PM. Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats. Pharm Biol 2015; 53: 1042-1051.
33. Alamri ES, El Rabey HA, Alzahrani OR, Almutairi FM, Attia ES, Bayomy HM, et al. Enhancement of the protective activity of vanillic acid against tetrachloro-carbon (CCl4) hepatotoxicity in male rats by the synthesis of silver nanoparticles (AgNPs). Molecules 2022; 27: 8308-8322.
34. Bouzenna H, Hfaiedh N, Giroux-Metges MA, Elfeki A, Talarmin H. Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed Pharmacother 2017; 93: 961-968.
35. Svegliati Baroni G, D’Ambrosio L, Ferretti G, Casini A, Di Sario A, Salzano R, et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 1998; 27: 720-726.
36. Sánchez-Valle V, C Chavez-Tapia N, Uribe M, Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr Med Chem 2012; 19: 4850-4860.
37. Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin Mol Hepatol 2015; 21: 319-325.
38. Kim DS, Lee HJ, Jeon YD, Han YH, Kee JY, Kim HJ, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chinese Med 2015; 43: 731-742.
39. Harbrecht BG, Di Silvio M, Chough V, Kim YM, Simmons RL, Billiar TR. Glutathione regulates nitric oxide synthase in cultured hepatocytes. Ann Surg 1997; 225: 76-87.
40. Ignat SR, Dinescu S, Hermenean A, Costache M. Cellular interplay as a consequence of inflammatory signals leading to liver fibrosis development. Cells 2020; 9: 461-477.
41. Xiang DM, Sun W, Ning BF, Zhou TF, Li XF, Zhong W, et al. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 2018; 67: 1704-1715.
42. Thalappil MA, Butturini E, Carcereri de Prati A, Bettin I, Antonini L, Sapienza FU, et al. Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules 2022; 27: 4834.
43. Meier RP, Meyer J, Montanari E, Lacotte S, Balaphas A, Muller YD, et al. Interleukin-1 receptor antagonist modulates liver inflammation and fibrosis in mice in a model-dependent manner. Int J Mol Sci 2019; 20: 1295-1312.
44. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
45. Kang E, Lee DH, Jung YJ, Shin SY, Koh D, Lee YH. α-Pinene inhibits tumor invasion through down-regulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Appl Biol Chem 2016; 59: 511-516.
46. Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Med 2007; 13: 1324-1332.
47. Zhao D, Xue C, Yang Y, Li J, Wang X, Chen Y, et al. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153: 113444.
48. Karthikeyan R, Kanimozhi G, Madahavan NR, Agilan B, Ganesan M, Prasad NR, et al. Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sci 2019; 217: 110-118.
49. Eldred JA, Hodgkinson LM, Dawes LJ, Reddan JR, Edwards DR, Wormstone IM. MMP2 activity is critical for TGFβ2-induced matrix contraction—Implications for fibrosis. Investig Ophthalmol Vis Sci 2012; 53: 4085-4098.
50. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016; 64: 157-167.
51. Zhangdi HJ, Su SB, Wang F, Liang ZY, Yan YD, Qin SY, et al. Crosstalk network among multiple inflammatory mediators in liver fibrosis. World J Gastroenterol 2019; 25: 4835.
52. Ko JW, Shin NR, Park SH, Kim JS, Cho YK, Kim JC, et al. Pine bark extract (Pycnogenol®) suppresses cigarette smoke-induced fibrotic response via transforming growth factor-β1/Smad family member 2/3 signaling. Lab Anim Res 2017; 33: 76-83.
53. Ustun O, Senol FS, Kurkcuoglu M, Orhan IE, Kartal M, Baser KH. Investigation on chemical composition, anticholinesterase and anti-oxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind Crops Prod 2012; 38: 115-123.
54. Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, et al. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer 2017; 83: 56-70.
55. Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res 2009; 19: 128-139.
56. Shan L, Ding Y, Fu Y, Zhou L, Dong X, Chen S, et al. mTOR overactivation in mesenchymal cells aggravates CCl4- induced liver fibrosis. Sci Rep 2016; 6: 36037.
57. Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87: 110123.
58. Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, et al. Attenuating PI3K/Akt-mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. Int J Biochem Cell Biol 2021; 134: 105952.
59. Antar SA, Ashour NA, Marawan ME, Al-Karmalawy AA. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci 2023; 24: 4004-4030.
60. Bae GS, Park KC, Choi SB, Jo IJ, Choi MO, Hong SH, Song K, Song HJ, Park SJ. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci 2012; 91: 866-871.