1. Mims JW. Asthma: Definitions and pathophysiology. Int Forum Allergy Rhinol 2015; 5: S2-6.
2. Lai CK, Beasley R, Crane J, Foliaki S, Shah J, Weiland S. Global variation in the prevalence and severity of asthma symptoms: Phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009; 64: 476-483.
3. Kobayashi Y, Johnson NP, Berry C, De Bruyne B, Gould KL, Jeremias A, et al. The influence of lesion location on the diagnostic accuracy of adenosine-free coronary pressure wire measurements. JACC Cardiovasc Interv 2016; 9: 2390-2399.
4. Castillo JR, Peters SP, Busse WW. Asthma exacerbations: Pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 2017; 5: 918-927.
5. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell 2021; 184: 1469-1485.
6. Ballesteros-Tato A, Randall TD, Lund FE, Spolski R, Leonard WJ, León B. T follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. Immunity 2016; 44: 259-273.
7. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009; 180: 388-395.
8. Lourenço LO, Ribeiro AM, Lopes F, Tibério I, Tavares-de-Lima W, Prado CM. Different phenotypes in asthma: Clinical findings and experimental animal models. Clin Rev Allergy Immunol 2022; 62: 240-263.
9. Serhan CN. Inflammation. Signalling the fat controller. Nature 1996; 384: 23-24.
10. Belvisi MG, Hele DJ, Birrell MA. New advances and potential therapies for the treatment of asthma. BioDrugs 2004; 18: 211-223.
11. Chen J, Dai AG, Fu MJ, Long ZG, Zhu LM. [The roles of PPAR-gamma/PGC-1alpha to Nrf2/gamma-GCS-h in lung of guinea pigs with bronchial asthma]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2011; 27: 225-229.
12. Spears M, McSharry C, Thomson NC. Peroxisome proliferator-activated receptor-gamma agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy 2006; 36: 1494-1504.
13. Ma M, Gao Y, Qiu X, Gui X, Tian Y, Tian M, et al. ZLN005 improves the protective effect of mitochondrial function on alveolar epithelial cell aging by upregulating PGC-1α. J Thorac Dis 2023; 15: 6160-6177.
14. Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, et al. Unraveling the role of NLRP3 inflammasome in allergic inflammation: Implications for novel therapies. Front Immunol 2024; 15:1435892-1435908.
15. Birrell MA, Eltom S. The role of the NLRP3 inflammasome in the pathogenesis of airway disease. Pharmacol Ther 2011; 130: 364-370.
16. Ma M, Li G, Qi M, Jiang W, Zhou R. Inhibition of the inflammasome activity of NLRP3 attenuates HDM-induced allergic asthma. Front Immunol 2021; 12: 718779-718791.
17. Shaban NZ, Sleem AA, Abu-Serie MM, Maher AM, Habashy NH. Regulation of the NF-κB signaling pathway and IL-13 in asthmatic rats by aerosol inhalation of the combined active constituents of Punica granatum juice and peel. Biomed Pharmacother 2022; 155: 113721-1137736.
18. Barnes PJ. Molecular mechanisms of antiasthma therapy. Ann Med 1995; 27: 531-535.
19. Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, et al. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185-196.
20. Tao X, Li J, He J, Jiang Y, Liu C, Cao W, et al. Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. J Ethnopharmacol 2023; 315:116720.
21. Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega Á L, Pérez S. PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid Med Cell Longev 2020; 2020: 1452696-1452716.
22. Kumar RK, Herbert C, Foster PS. The “classical” ovalbumin challenge model of asthma in mice. Curr Drug Targets 2008; 9: 485-494.
23. Clausen SK, Bergqvist M, Poulsen LK, Poulsen OM, Nielsen GD. Development of sensitisation or tolerance following repeated OVA inhalation in BALB/cJ mice. Dose-dependency and modulation by the Al(OH)3 adjuvant. Toxicology 2003; 184: 51-68.
24. Aven L, Paez-Cortez J, Achey R, Krishnan R, Ram-Mohan S, Cruikshank WW, et al. An NT4/TrkB-dependent increase in innervation links early-life allergen exposure to persistent airway hyperreactivity. FASEB J 2014; 28:897-907.
25. Xuan L, Ren L, Zhang W, Du P, Li B, An Z. Formaldehyde aggravates airway inflammation through induction of glycolysis in an experimental model of asthma exacerbated by lipopolysaccharide. Sci Total Environ 2024; 912: 168947.
26. Guo H, Chen J, Yu H, Dong L, Yu R, Li Q, et al. Activation of Nrf2/ARE pathway by Anisodamine (654-2) for inhibition of cellular aging and alleviation of radiation-induced lung injury. Int Immunopharmacol 2023; 124: 110864.
27. Wu Z, Mehrabi Nasab E, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med 2022; 20: 130-144.
28. Liu L, Wang B, Yang W, Jiang Q, Loor JJ, Ouyang L, et al. Sirtuin 3 relieves inflammatory responses elicited by lipopolysaccharide via the PGC1α-NFκB pathway in bovine mammary epithelial cells. J Dairy Sci 2023; 106: 1315-1329.
29. Liu X, Cui H, Bai Q, Piao H, Song Y, Yan G. miR-128-3p alleviates airway inflammation in asthma by targeting SIX1 to regulate mitochondrial fission and fusion. Int Immunopharmacol 2024; 130: 111703.
30. Wang JY, Dong X, Yu Z, Ge L, Lu L, Ding L, et al. Borneol inhibits CD4 + T cells proliferation by down-regulating miR-26a and miR-142-3p to attenuate asthma. Int Immunopharmacol 2021; 90: 107223.
31. Adcock IM, Caramori G, Chung KF. New targets for drug development in asthma. Lancet 2008; 372: 1073-1087.
32. Chang C. Asthma in children and adolescents: A comprehensive approach to diagnosis and management. Clin Rev Allergy Immunol 2012; 43: 98-137.
33. Hatzivlassiou M, Grainge C, Kehagia V, Lau L, Howarth PH. The allergen specificity of the late asthmatic reaction. Allergy 2010; 65: 355-358.
34. Pillai P, Chan YC, Wu SY, Ohm-Laursen L, Thomas C, Durham SR, et al. Omalizumab reduces bronchial mucosal IgE and improves lung function in non-atopic asthma. Eur Respir J 2016; 48: 1593-1601.
35. Fedyk ER, Adawi A, Looney RJ, Phipps RP. Regulation of IgE and cytokine production by cAMP: Implications for extrinsic asthma. Clin Immunol Immunopathol 1996; 81: 101-113.
36. Bruijnzeel PL, Rihs S, Betz S. [Eosinophilic granulocytes and their significance in allergic diseases]. Schweiz Med Wochenschr 1992; 122: 173-180.
37. Dewson G, Cohen GM, Wardlaw AJ. Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils. Blood 2001; 98: 2239-2247.
38. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003; 167: 199-204.
39. Beerweiler CC, Masanetz RK, Schaub B. Asthma and allergic diseases: Cross talk of immune system and environmental factors. Eur J Immunol 2023; 53: e2249981-2249989.
40. De Volder J, Vereecke L, Joos G, Maes T. Targeting neutrophils in asthma: A therapeutic opportunity? Biochem Pharmacol 2020; 182: 114292.
41. Poynter ME, Irvin CG, Janssen-Heininger YM. Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 2002; 160: 1325-1334.
42. Poynter ME, Irvin CG, Janssen-Heininger YM. A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol 2003; 170: 6257-6265.
43. Guo S, Li W, Chen F, Yang S, Huang Y, Tian Y, et al. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway. Int Immunopharmacol 2021; 98: 107692.
44. Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 2015; 5: 1266-1283.
45. Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2001; 2: 45-50.
46. Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J Allergy Clin Immunol 2021; 147: 2060-2062.
47. Queiroz GA, da Silva RR, Pires AO, Costa RDS, Alcântara-Neves NM, da Silva TM, et al. New variants in NLRP3 inflammasome genes increase risk for asthma and Blomia tropicalis-induced allergy in a Brazilian population. Cytokine X 2020; 2:100032-100040.
48. Kim SR, Kim DI, Kim SH, Lee H, Lee KS, Cho SH, et al. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 2014; 5: e1498-1513.
49. Barker BR, Taxman DJ, Ting JP. Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 2011; 23: 591-597.
50. Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med 2017; 196: 283-297.
51. Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J 2014; 43: 1067-1076.
52. Xu S, Wang D, Tan L, Lu J. The role of NLRP3 inflammasome in type 2 inflammation related diseases. Autoimmunity 2024; 57: 2310269-2310278.
53. Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, et al. Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1α/TNFAIP3 axis. Cell Rep 2018; 22: 3493-3506.