In vitro effects of phytochemicals on adipogenesis with a focus on molecular mechanisms: A systematic review

Document Type : Review Article

Authors

1 Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Biology, Yazd University, Yazd, Iran

3 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Adipogenesis, the process of proliferation of adipocyte progenitor cells and their differentiation into mature adipocytes, plays a critical role in the development of obesity. In this context, exploring the effects of phytochemicals on adipogenesis is very promising, as nowadays, they are widely used as food, drink, or supplement and can significantly impact general health and obesity control. This systematic review attempts to evaluate new findings regarding the molecular mechanisms of different phytochemicals on adipogenesis in in vitro models. Between 2010 and July 2023, a comprehensive systematic search of PubMed and Scopus databases was conducted. The following keywords were used: (“adipogenic”) AND (“inhibit” OR “suppress” OR “reduce” OR “anti” OR “decrease”) AND (“cell” OR “cell line” OR “adipocyte”) AND (“phytochemical” OR “plant” OR “herb”). In this review, 109 studies were comprehensively analyzed, which provided important insights into the process of adipogenesis. Among the numerous transcription factors studied, PPARγ, C/EBPα, and SREBP1c were found to be the most important regulators actively involved in adipocyte differentiation. These results highlight the critical role of these factors in the control of adipogenesis and suggest that they represent promising targets for therapeutic interventions aimed at reducing the excessive lipid accumulation associated with obesity. This study provides a compelling rationale for further exploring phytochemicals as potential therapeutics for treating obesity. The potential benefits of using natural products to influence adipogenesis are evident, and future studies should focus on translating these findings into clinical applications. 

Keywords

Main Subjects


1. Lane MD, Tang QQ. From multipotent stem cell to adipocyte. Birth Defects Res A Clin Mol Teratol 2005; 73: 476-477. 
2.    Misawa K, Hashizume K, Yamamoto M, Minegishi Y, Hase T, Shimotoyodome A. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. J Nutr Biochem 2015; 26: 1058-1067. 
3.    Seo SangGwon SS, Yang Hee YH, Shin SeungHo SS, Min SoYun MS, Kim YA, Yu JaeGak YJ, et al. A metabolite of daidzein, 6, 7, 4′-trihydroxyisoflavone, suppresses adipogenesis in 3T3-L1 preadipocytes via ATP-competitive inhibition of PI3K. Mol Nutr Food Res 2013; 57: 1446-1455.
4.    Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: A systematic and clinical review. J Am Med Assoc 2014; 311: 74-86. 
5.    Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021; 48: 743-761. 
6.    Geng X, Feng Y, Yu C, Yao Y, Chen W, Guo J, et al. Taurine supplementation decreases fat accumulation by suppressing FAS and enhancing ATGL through the ATGL pathway. Iran J Basic Med Sci 2024; 2024; 27: 1529–1535.
7.    Ibrahim KG, Hudu SA, Jega AY, Taha A, Yusuf AP, Usman D, Adeshina KA, Umar ZU, Nyakudya TT, Erlwanger KH. Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. Iran J Basic Med Sci. 2024; 27: 1214–1227. 
8.    Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and pharmacological effects of gamma-oryzanol: An updated review of the molecular mechanisms. Curr Pharm Des 2021; 27: 2299-2316. 
9.    Emami SA, Ramazani E, Mousavi SH, Vahdati-Mashhadian N, Asili J, Parsaee H, Tayarani-Najaran Z. Neobaicalein, a flavonoid from the Scutellaria litwinowii Bornm. & Sint. ex Bornm. induced apoptosis in human leukemic cell lines. Iran J Basic Med Sci  2023; 26:269–275. 
10.    Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci 2022; 304: 120728. 
11.    Javadi B, Sobhani Z. Role of apigenin in targeting metabolic syndrome: A systematic review. Iran J Basic Med Sci. 2024; 27: 524–534. 
12.    Lim H, Yeo E, Song E, Chang YH, Han BK, Choi HJ, et al. Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells. Nutr Res Pract 2015; 9: 599-605. 
13.    Han MH, Jeong JS, Jeong JW, Choi SH, Kim SO, Hong SH, et al. Ethanol extracts of Aster yomena (Kitam.) Honda inhibit adipogenesis through the activation of the AMPK signaling pathway in 3T3-L1 preadipocytes. Drug Discov Ther 2017; 11: 281-287. 
14.    Yang JY, Della‐Fera MA, Hartzell DL, Nelson‐Dooley C, Hausman DB, Baile CA. Esculetin induces apoptosis and inhibits adipogenesis in 3T3-L1 cells. Obesity 2006; 14: 1691-1699. 
15.    Lee M, Lee SH, Kang J, Yang H, Jeong EJ, Kim HP, et al. Salicortin-derivatives from Salix pseudo-lasiogyne twigs inhibit adipogenesis in 3T3-L1 cells via modulation of C/EBPalpha and SREBP1c dependent pathway. Molecules 2013; 18: 10484-10496. 
16.    Spalletta S, Flati V, Toniato E, Di Gregorio J, Marino A, Pierdomenico L, et al. Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PLoS One 2018; 13: e0206894.
17.    Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ, et al. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/beta-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phytother Res 2011; 25: 1629-1635. 
18.    Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim Biophys Acta 2013; 830: 3796-3806. 
19.    Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN J Prosthet Dent 2022;131:1038-1042. 
20.    Choi JS, Kim JH, Ali MY, Min BS, Kim GD, Jung HA. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 2014; 98: 199-208. 
21.    San HT, Khine HE, Sritularak B, Prompetchara E, Chaotham C, Che CT, et al. Pinostrobin: an adipogenic suppressor from fingerroot (Boesenbergia rotunda) and Its possible mechanisms. Foods 2022; 11: 3024-3040. 
22.    Thomas SS, Eom J, Sung NY, Kim DS, Cha YS, Kim KA. Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation. Nutr Res Pract 2021; 15: 555-567. 
23.    Lee HD, Kim JH, Pang QQ, Jung PM, Cho EJ, Lee S. Anti-oxidant activity and acteoside analysis of Abeliophyllum distichum. Antioxidants 2020: 9: 1148-1154.
24.    Saiki P, Kawano Y, Ogi T, Klungsupya P, Muangman T, Phantanaprates W, et al. Purified gymnemic acids from Gymnema inodorum tea inhibit 3T3-L1 cell differentiation into adipocytes. Nutrients 2020; 12: 2851. 
25.    Han MH, Kim HJ, Jeong JW, Park C, Kim BW, Choi YH. Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of Vitis coignetiae Pulliat is associated with the activation of AMPK signaling pathway. Toxicol Res 2018; 34: 13-21. 
26.    Park SJ, Park JH, Han A, Davaatseren M, Kim HJ, Kim MS, et al. Euphorbiasteroid, a component of Euphorbia lathyris L., inhibits adipogenesis of 3T3-L1 cells via activation of AMP-activated protein kinase. Cell Biochem Funct 2015; 33: 220-225. 
27.    Jang EJ, Kim HK, Jeong H, Lee YS, Jeong MG, Bae SJ, et al. Anti-adipogenic activity of the naturally occurring phenanthroindolizidine alkaloid antofine via direct suppression of PPARγ expression. Chem Biodivers 2014; 11: 962-969. 
28.    Dudhia Z, Louw J, Muller C, Joubert E, de Beer D, Kinnear C, et al. Cyclopia maculata and Cyclopia subternata (honeybush tea) inhibits adipogenesis in 3T3-L1 pre-adipocytes. Phytomedicine 2013; 20: 401-408. 
29.    Xiao L, Zhang J, Li H, Liu J, He L, Zhang J, et al. Inhibition of adipocyte differentiation and adipogenesis by the traditional Chinese herb Sibiraea angustata. Exp Biol Med 2010; 235: 1442-1449. 
30.    Yang L, Li XF, Gao L, Zhang YO, Cai GP. Suppressive effects of quercetin-3-O-(6″-Feruloyl)-β-D-galactopyranoside on adipogenesis in 3T3-L1 preadipocytes through down-regulation of PPARγ and C/EBPα expression. Phytother Res 2012; 26: 438-444. 
31.    Kong CS, Seo Y. Antiadipogenic activity of isohamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea. Immunopharmacol Immunotoxicol 2012; 34: 907-911. 
32.    Freise C, Trowitzsch-Kienast W, Erben U, Seehofer D, Kim KY, Zeitz M, et al. (+)-Episesamin inhibits adipogenesis and exerts anti-inflammatory effects in 3T3-L1 (pre)adipocytes by sustained Wnt signaling, down-regulation of PPARγ and induction of iNOS. J Nutr Biochem 2013; 24: 550-555. 
33.    Kang SW, Kang SI, Shin HS, Yoon SA, Kim JH, Ko HC, et al. Sasa quelpaertensis Nakai extract and its constituent p-coumaric acid inhibit adipogenesis in 3T3-L1 cells through activation of the AMPK pathway. Food Chem Toxicol 2013; 59: 380-385. 
34.    Han YH, Li Z, Um JY, Liu XQ, Hong SH. Anti-adipogenic effect of Glycoside St-E2 and Glycoside St-C1 isolated from the leaves of Acanthopanax henryi (Oliv.) Harms in 3T3-L1 cells. Biosci Biotechnol Biochem 2016; 80: 2391-2400. 
35.    Lee MS, Shin Y, Jung S, Kim SY, Jo YH, Kim CT, et al. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules 2017; 22: 1160-1173. 
36.    Hong H, Park J, Lumbera WL, Hwang SG. Monascus ruber-fermented buckwheat (red yeast buckwheat) suppresses adipogenesis in 3T3-L1 cells. J Med Food 2017; 20: 352-359. 
37.    Puckett D, Alquraishi M, Alani DS, Chahed S, Frankel VD, Donohoe D, et al. Zyflamend, a unique herbal blend, induces cell death and inhibits adipogenesis through the coordinated regulation of PKA and JNK. Adipocyte 2020; 9: 454-471. 
38.    Hadrich F, Sayadi S. Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARgamma and CEBP-alpha. Lipids Health Dis 2018; 17: 1-8. 
39.    Jang YS, Wang Z, Lee JM, Lee JY, Lim SS. Screening of korean natural products for anti-adipogenesis properties and isolation of Kaempferol-3-O-rutinoside as a potent anti-adipogenetic compound from Solidago virgaurea. Molecules 2016; 21: 226-236. 
40.    Zhang J, Tang H, Deng R, Wang N, Zhang Y, Wang Y, et al. Berberine suppresses adipocyte differentiation via decreasing CREB transcriptional activity. PLoS One 2015; 10: e0125667. 
41.    Jang YJ, Son HJ, Ahn J, Jung CH, Ha T. Coumestrol modulates Akt and Wnt/beta-catenin signaling during the attenuation of adipogenesis. Food Funct 2016; 7: 4984-4991. 
42.    Ono M, Fujimori K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem 2011; 59: 13346-13352. 
43.    Shin HS, Lee SG, Moon BS. Protective effects of Dohongsamul-tang on 2-deoxy-D-glucose induced autophagic cell death in C6 glial cells. J Physiol & Pathol Korean Med 2009; 23: 581-589.
44.    Shim EH, Lee H, Lee MS, You S. Anti-adipogenic effects of the traditional herbal formula Dohongsamul-tang in 3T3-L1 adipocytes. BMC complement med ther 2017; 17: 1-10. 
45.    Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 2014; 21: 758-765. 
46.    Yang SH, Ahn EK, Lee JA, Shin TS, Tsukamoto C, Suh JW, et al. Soyasaponins Aa and Ab exert an anti-obesity effect in 3T3-L1 adipocytes through downregulation of PPARγ. Phytother Res 2015; 29: 281-287. 
47.    Kim CY, Kang B, Hong J, Choi HS. Parthenolide inhibits lipid accumulation via activation of Nrf2/Keap1 signaling during adipocyte differentiation. Food Sci Biotechnol 2020; 29: 431-440. 
48.    Choi JW, Lee CW, Lee J, Choi DJ, Sohng JK, Park YI. 7,8-Dihydroxyflavone inhibits adipocyte differentiation via anti-oxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells. Life Sci 2016; 144: 103-112. 
49.    Jang M, Choi HY, Kim GH. Phenolic components rich ethyl acetate fraction of Orostachys japonicus inhibits lipid accumulation by regulating reactive oxygen species generation in adipogenesis. J Food Biochem 2019; 43: e12939. 
50.    Bao T, Xu Y, Gowd V, Zhao J, Xie J, Liang W, et al. Systematic study on phytochemicals and anti-oxidant activity of some new and common mulberry cultivars in China. J Funct Foods 2016; 25: 537-547. 
51.    Lee MS, Kim Y. Mulberry fruit extract ameliorates adipogenesis via increasing AMPK activity and downregulating microRNA-21/143 in 3T3-L1 adipocytes. J Med Food 2020; 23: 266-272. 
52.    Park HJ, Chung BY, Lee MK, Song Y, Lee SS, Chu GM, et al. Centipede grass exerts anti-adipogenic activity through inhibition of C/EBPβ, C/EBPα, and PPARγ expression and the AKT signaling pathway in 3T3-L1 adipocytes. BMC Complement. Med Ther 2012; 12: 1-9. 
53.    Lee YJ, Kim KJ, Park KJ, Yoon BR, Lim JH, Lee OH. Buckwheat (Fagopyrum esculentum M.) sprout treated with methyl jasmonate (MeJA) improved anti-adipogenic activity associated with the oxidative stress system in 3T3-L1 adipocytes. Int J Mol Sci 2013; 14: 1428-1442. 
54.    Harada N, Ishihara M, Horiuchi H, Ito Y, Tabata H, Suzuki YA, et al. Mogrol derived from Siraitia grosvenorii Mogrosides suppresses 3T3-L1 adipocyte differentiation by reducing cAMP-response element-binding protein phosphorylation and increasing AMP-activated protein kinase phosphorylation. PLoS One 2016; 11: e0162252. 
55.    Nakao Y, Yoshihara H, Fujimori K. Suppression of very early stage of adipogenesis by baicalein, a plant-derived flavonoid through reduced Akt-C/EBPα-GLUT4 signaling-mediated glucose uptake in 3T3-L1 adipocytes. PLoS One 2016; 11: e0163640. 
56.    Wijesinghe WA, Jeon YJ. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: A review. Int J Food Sci Nutr 2012; 63: 225-235.
57.    Kim IH, Nam TJ. Enzyme-treated Ecklonia cava extract inhibits adipogenesis through the downregulation of C/EBPα in 3T3-L1 adipocytes. Int J Mol Med 2017; 39: 636-644. 
58.    Lima ND, Numata ED, Mesquita LM, Dias PH, Vilegas W, Gambero A, et al. Modulatory effects of Guarana (Paullinia cupana) on adipogenesis. Nutrients 2017; 9: 635-646. 
59.    Park SJ, Park M, Sharma A, Kim K, Lee HJ. Black ginseng and ginsenoside Rb1 promote browning by inducing UCP1 expression in 3T3-L1 and primary white adipocytes. Nutrients 2019; 11: 2747-2759. 
60.    Lim SH, Lee HS, Han HK, Choi CI. Saikosaponin A and D inhibit adipogenesis via the AMPK and MAPK signaling pathways in 3T3-L1 adipocytes. Int J Mol Sci 2021; 22: 11409-11424. 
61.    Li C, Zhou L. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol In Vitro 2015; 30: 394-401. 
62.    Gao D, Zhang YL, Yang FQ, Li F, Zhang QH, Xia ZN. The flower of Edgeworthia gardneri (wall.) Meisn. suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. J Ethnopharmacol 2016; 191: 379-386. 
63.    Chen CC, Chuang WT, Lin AH, Tsai CW, Huang CS, Chen YT, et al. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation. Toxicol Appl Pharmacol 2016; 307: 115-122. 
64.    Kim HK, Hairani R, Jeong H, Jeong MG, Chavasiri W, Hwang ES. CBMG, a novel derivative of mansonone G suppresses adipocyte differentiation via suppression of PPARγ activity. Chem -Biol Interact 2017; 273: 160-170. 
65.    Ganjayi MS, Karunakaran RS, Gandham S, Meriga B. Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells. Rev Bras Farmacogn 2023; 33: 334-343. 
66.    Lim DW, Yu GR, Kim JE, Park WH. Network pharmacology predicts combinational effect of novel herbal pair consist of Ephedrae herba and Coicis semen on adipogenesis in 3T3-L1 cells. PLoS One 2023; 18: e0282875. 
67.    Lee S R, Lee B S, Yu J S, Kang H, Yoo M J, Yi S A, Kim K H. Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J Ginseng Res 2022; 46: 357-366.
68.    Hossin A Y, Inafuku M, Takara K, Nugara R N, Oku H. Syringin: A phenylpropanoid glycoside compound in Cirsium brevicaule A. gray root modulates adipogenesis. Molecules 2021; 26: 1531-1542. 
69.    Sung Y Y, Son E, Im G, Kim D S. Herbal combination of Phyllostachys pubescens and Scutellaria baicalensis inhibits adipogenesis and promotes browning via AMPK activation in 3T3-L1 adipocytes. Plants (Basel) 2020; 9: 1422-1436. 
70.    Lee M S, Kim Y. Chrysanthemum morifolium Flower Extract Inhibits Adipogenesis of 3T3-L1 Cells via AMPK/SIRT1 Pathway Activation. Nutrients 2020; 12: 2726-2738. 
71.    Yu J S, Sahar N E, Bi Y R, Jung K, Pang C, Huh J Y, et al. The Effects of Triterpenoid Saponins from the Seeds of Momordica cochinchinensis on Adipocyte Differentiation and Mature Adipocyte Inflammation. Plants (Basel) 2020; 9: 984. 
72.    Mu R F, Niu Y F, Wang Q, Zhou H M, Hu J, Qin W Y, et al. Eriocalyxin B Inhibits Adipogenesis in 3T3-L1 Adipocytes by Cell Cycle Arrest. Nat Prod Bioprospect 2020; 10: 131-140. 
73.    Baek S C, Nam K H, Yi S A, Jo M S, Lee K H, Lee Y H, Lee J, Kim K H. Anti-adipogenic effect of β-Carboline alkaloids from garlic (Allium sativum). Foods. 2019; 8:673-684. 
74.    Oh J H, Karadeniz F, Lee J I, Seo Y, Kong C S. Artemisia princeps inhibits adipogenic differentiation of 3T3-L1 pre-adipocytes via downregulation of PPARγ and MAPK pathways. Prev Nutr Food Sci 2019; 24: 299-307. 
75.    Chayaratanasin P, Caobi A, Suparpprom C, Saenset S, Pasukamonset P, Suanpairintr N, et al. Clitoria ternatea flower petal extract inhibits adipogenesis and lipid accumulation in 3T3-L1 preadipocytes by downregulating adipogenic gene expression. Molecules 2019; 24: 1894-1909. 
76.    Huh J Y, Lee S, Ma E B, Eom H J, Baek J, Ko Y J, et al. The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism. J Enzyme Inhib Med Chem 2018; 33: 1167-1173. 
77.    Sharma K, Kang S, Gong D, Oh S H, Park E Y, Oak M H, et al. Combination of Garcinia cambogia extract and Pear Pomace extract additively suppresses adipogenesis and enhances lipolysis in 3T3-L1 cells. Pharmacogn Mag 2018; 14: 220-226. 
78.    Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. J Ethnopharmacol 2019; 233: 123-130. 
79.    Shim E H, Lee M S, Lee J A, Lee H. Do in Seung Gi‑Tang extract suppresses adipocyte differentiation in 3T3‑L1 cells. Mol Med Rep 2017; 15: 3549-3554. 
80.    Li K K, Liu C L, Shiu H T, Wong H L, Siu W S, Zhang C, et al. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. Sci Rep 2016; 6: 20172-20182. 
81.    Kim H, Lee Y, Han T, Choi E M. The micosporine-like amino acids-rich aqueous methanol extract of laver (Porphyra yezoensis) inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Nutr Res Pract 2015; 9: 592-598. 
82.    Jeong S J, Yoo S R, Seo C S, Shin H K. Traditional korean herbal formula samsoeum attenuates adipogenesis by regulating the phosphorylation of ERK1/2 in 3T3-L1 cells. Evid Based Complement Alternat Med 2015; 2015: 893934. 
83.    Bunkrongcheap R, Hutadilok-Towatana N, Noipha K, Wattanapiromsakul C, Inafuku M, Oku H. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells. Lipids Health Dis 2014; 13: 88-97. 
84.    Song N J, Yoon H J, Kim K H, Jung S R, Jang W S, Seo C R, et al. Butein is a novel anti-adipogenic compound. J Lipid Res 2014; 54: 1385-1396. 
85.    Park U H, Jeong J C, Jang J S, Sung M R, Youn H, Lee S J, et al. Negative regulation of adipogenesis by kaempferol, a component of i in 3T3-L1 cells. Biol Pharm Bull 2012; 35: 1525-1533. 
86.    Wang X L, Wang N, Zheng L Z, Xie X H, Yao D, Liu, M Y, et al. Phytoestrogenic molecule desmethylicaritin suppressed adipogenesis via Wnt/β-catenin signaling pathway. Eur J Pharmacol 2013; 714: 254-260. 
87.    Guo L X, Chen G, Yin Z Y, Zhang Y H, Zheng X X. p-Synephrine exhibits anti-adipogenic activity by activating the Akt/GSK3β signaling pathway in 3T3-L1 adipocytes. J Food Biochem 2019; 43: e13033. 
88.    Kim W J, Yu H S, Bae W Y, Ko K Y, Chang K H, Lee N K, et al. Chrysanthemum indicum suppresses adipogenesis by inhibiting mitotic clonal expansion in 3T3-L1 preadipocytes. J Food Biochem 2021; 45: e13896. 
89.    Guo L, Li K, Cui Z W, Kang J S, Son B G, Choi Y W. S-Petasin isolated from Petasites japonicus exerts anti-adipogenic activity in the 3T3-L1 cell line by inhibiting PPAR-γ pathway signaling. Food Funct 2019; 10: 4396-4406. 
90.    Wang Q, Wang S T, Yang X, You P P, Zhang W. Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res 2015; 35: 317-327. 
91.    Park K S. Raspberry ketone, a naturally occurring phenolic compound, inhibits adipogenic and lipogenic gene expression in 3T3-L1 adipocytes. Pharm Biol 2015; 53: 870-875. 
92.    Choi E O, Park C, Shin S S, Cho E J, Kim B W, Hwang J A, et al. Zanthoxylum schinifolium leaf ethanol extract inhibits adipocyte differentiation through inactivation of the extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt signaling pathways in 3T3-L1 pre-adipocytes. Mol Med Rep 2015; 12: 1314-1320.
93.    Singh J, Kakkar P. Oroxylin A, a constituent of Oroxylum indicum inhibits adipogenesis and induces apoptosis in 3T3-L1 cells. Phytomedicine 2014; 21: 1733-1741. 
94.    Wu M R, Hou M H, Lin Y L, Kuo C F. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. J Agric Food Chem 2012; 60: 7262-7269. 
95.    Lee J A, Seo D W, Hong S S, Oh J S. 1β-Hydroxy-2-oxopomolic acid isolated from Agrimonia pilosa extract inhibits adipogenesis in 3T3-L1 cells. Biol Pharm Bull 2012; 35: 643-649. 
96.    Kim J, Lee I, Seo J, Jung M, Kim Y, Yim N, et al. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res 2010; 24: 1543-1548. 
97.    Lee M, Song J Y, Chin Y W, Sung S H. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells. Bioorg Med Chem Lett 2013; 23: 2069-2073.
98.    Choi J S, Kim J H, Ali M Y, Jung H J, Min B S, Choi R J, et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways. Arch Pharm Res 2015; 38: 2153-2162. 
99.    Sanderson M, Mazibuko S E, Joubert E, de Beer D, Johnson R, Pheiffer C, et al. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 2014; 21: 109-117. 
100.    Beg M, Chauhan P, Varshney S, Shankar K, Rajan S, Saini D, et al. A withanolide coagulin-L inhibits adipogenesis modulating Wnt/β-catenin pathway and cell cycle in mitotic clonal expansion. Phytomedicine 2014; 21: 406-414. 
101.    Kowalska K, Olejnik A, Rychlik J, Grajek W. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells. Food Chem 2014; 148: 246-252.
102.    Kim M A, Kang K, Lee H J, Kim M, Kim C Y, Nho C W. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci 2014; 101: 64-72. 
103.    Lee B, Kwon M, Choi J S, Jeong H O, Chung H Y, Kim H R. Kaempferol Isolated from Nelumbo nucifera inhibits lipid accumulation and increases fatty acid oxidation signaling in adipocytes. J Med Food 2015; 18: 1363-1370. 
104.    Wang S, Zhang Q, Zhang Y, Shen C, Wang Z, Wu Q, et al. Agrimol B suppresses adipogenesis through modulation of SIRT1-PPAR gamma signal pathway. Biochem Biophys Res Commun 2016; 477: 454-460. 
105.    Choi R Y, Nam S J, Ham J R, Lee H I, Yee S T, Kang K Y, et al. Anti-adipogenic and anti-diabetic effects of cis-3’,4’-diisovalerylkhellactone isolated from Peucedanum japonicum Thunb leaves in vitro. Bioorg Med Chem Lett 2016; 26: 4655-4660. 
106.    Song J H, Kang H B, Kim J H, Kwak S, Sung G J, Park S H, et al. Anti-obesity and cholesterol-lowering effects of Dendropanax morbifera water extracts in mouse 3T3-L1 cells. J Med Food 2018; 21: 793-800. 
107.    Kim H, Choung S Y. Anti-obesity effects of Boussingaulti gracilis Miers var. pseudobaselloides Bailey via activation of AMP-activated protein kinase in 3T3-L1 cells. J Med Food 2012; 15: 811-817. 
108.    Yang S J, Park N Y, Lim Y. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes. Nutr Res Pract 2014; 8: 613-617. 
109.    Kim G C, Kim J S, Kim G M, Choi S Y. Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food Nutr Res 2017; 61: 1339555. 
110.    Khan M I, Shin J H, Shin T S, Kim M Y, Cho N J, Kim J D. Anthocyanins from Cornus kousa ethanolic extract attenuate obesity in association with anti-angiogenic activities in 3T3-L1 cells by down-regulating adipogeneses and lipogenesis. PLoS One 2018; 13: e0208556. 
111.    Bu S, Yuan C Y, Xue Q, Chen Y, Cao F. Bilobalide suppresses adipogenesis in 3T3-L1 adipocytes via the AMPK signaling pathway. Molecules 2019; 24: 3503-3516.
112.    Huang H T, Liaw C C, Chiou C T, Lee K T, Kuo Y H. Mesonosides A-H, primeverose derivatives from Mesona procumbens suppress adipogenesis by downregulating PPARγ and C/EBPα in 3T3-L1 cells. J Food Drug Anal 2021; 29: 448-467. 
113.    Zarasvand S A, Haley-Zitlin V, Oladosu O, Esobi I, Powell R R, Bruce T, et al. Assessing anti-adipogenic effects of mango leaf tea and mangiferin within cultured adipocytes. Diseases 2023; 11: 70-80.
114.    Gembe-Olivarez G, Preciado-Ortiz M E, Campos-Perez W, Rodríguez-Reyes S C, Martínez-López E, Rivera-Valdés J J. A mix of ginger phenols exhibits anti‑adipogenic and lipolytic effects in mature adipocytes derived from 3T3‑L1 cells. Exp Ther Med 2023; 26: 336-344. 
115.    Al-Snafi AE. The traditional uses, constituents and pharmacological effects of Ononis spinosa. IOSR J Pharm Biol Sci 2020; 10: 53-59.
116.    Mladenova SG, Savova MS, Marchev AS, Ferrante C, Orlando G, Wabitsch M, et al. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARgamma in human adipocytes. Biomed Pharmacother 2022; 149: 112908. 
117.    Park IS, Han Y, Jo H, Lee KW, Song YS. Piceatannol is superior to resveratrol at suppressing adipogenesis in human visceral adipose-derived stem cells. Plants 2021; 10: 366-377. 
118.    Zhao L, Yagiz Y, Xu C, Lu J, Chung S, Marshall MR. Muscadine grape seed oil as a novel source of tocotrienols to reduce adipogenesis and adipocyte inflammation. Food Funct 2015; 6: 2293-2302. 
119.    Nerurkar PV, Lee YK, Nerurkar VR. Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes.  Complement Altern Med  2010; 10: 34-44. 
120.    Lo Furno D, Graziano AC, Avola R, Giuffrida R, Perciavalle V, Bonina F, et al. A Citrus bergamia extract decreases adipogenesis and increases lipolysis by modulating PPAR levels in mesenchymal stem cells from human adipose tissue. PPAR Res 2016; 2016: 4563815. 
121.    Park IS, Kim B, Han Y, Yang H, Cho U, Kim SI, et al. Decursin and decursinol angelate suppress adipogenesis through activation of β-catenin signaling pathway in human visceral adipose-derived stem cells. Nutrients 2019; 12: 13-27. 
122.    Nehme R, Chervet A, Decombat C, Longechamp L, Rossary A, Boutin R, et al. Aspalathus linearis (Rooibos) targets adipocytes and obesity-associated inflammation. Nutrients 2023; 15: 1751-1770. 
123.    Jafari F, Emami SA, Javadi B, Salmasi Z, Tayarani-Najjaran M, Tayarani-Najaran Z. Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells. J Ethnopharmacol 2022; 294: 115340-115348. 
124.    Shahbodi M, Emami SA, Javadi B, Tayarani-Najaran Z. Effects of thymoquinone on adipocyte differentiation in human adipose-derived stem cells. Cell Biochem Biophys 2022; 80: 771-779. 
125.    Ha JH, Jang J, Chung SI, Yoon Y. AMPK and SREBP-1c mediate the anti-adipogenic effect of β-hydroxyisovalerylshikonin. Int J Mol Med 2016; 37: 816-824. 
126.    Burgermeister E, Seger R. MAPK-kinases as nucleo-cytoplasmic shuttles for PPARγ. Cell Cycle 2007; 6: 1539-1548.
127.    Kim SP, Ha JM, Yun SJ, Kim EK, Chung SW, Hong KW, et al. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem Biophys Res Commu 2010; 399: 55-59.