1. Divanbeigi N, Yousefian M, Etemad L, Azizi M, Ebrahimzadeh A, Oroojalian F, et al. Improving the anticancer efficiency of doxorubicin by luteolin nanoemulsion: In vitro study. Nanomed J 2023; 10:47-58.
2. Mansouri M, Moallem SA, Asili J, Etemad L. Cytotoxic and apoptotic effects of scrophularia umbrosa dumort extract on MCF-7 breast cancer and 3T3 cells. Rep Biochem Mol Biol 2019; 8:79-84.
3. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat. Rev Drug Discov 2009; 8:579-591.
4. Welch HG, Kramer BS, Black WC. Epidemiologic signatures in cancer. N Engl J Med 2019; 381:1378-1386.
5. Yue C, Liu P, Zheng M, Zhao P, Wang Y, Ma Y, et al. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013; 34:6853-6861.
6. Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 2016; 98:23-30.
7. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-540.
8. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020; 17:395-417.
9. Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and immunotherapy for cancer: From “systemic” to “multisite” recent discoveries in radiotherapy–immunotherapy of cancer.
Clin Cancer Res 2020; 26:2777-2782.
10. Pitroda SP, Chmura SJ, Weichselbaum RR. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol 2019; 20: e434-e442.
11. Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201.
12. Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021; 13:1332-1347.
13. Helmink BA, Khan MW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019; 25:377-388.
14. Zhi D, Yang T, O’hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020; 325:52-71.
15. Liu S, Pan X, Liu H. Two‐dimensional nanomaterials for photothermal therapy. Angew Chem Int Ed Engl 2020; 132:5943-5953.
16. dos Santos AlF, de Almeida DQ, Terra LF, Baptista McS, Labriola L. Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 2019; 5:10-20.
17. Gao W, Wang Z, Lv L, Yin D, Chen D, Han Z, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016; 6:1131-1144.
18. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14:1-27.
19. Yan P, Liu L-H, Wang P. Sonodynamic therapy (SDT) for cancer treatment: Advanced sensitizers by ultrasound activation to injury tumor. ACS Appl Bio Mater 2020; 3:3456-3475.
20. Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: Tumour microenvironment‐mediated fenton and fenton‐like reactions. Angew Chem Int Ed 2019; 131:958-968.
21. Hwang E, Jung HS. Metal–organic complex-based chemodynamic therapy agents for cancer therapy. Chem Commun 2020; 56:8332-8341.
22. Qiao J, Kong X, Hu Z-X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 2014; 5:4475-4481.
23. Gao L, Chen Q, Gong T, Liu J, Li C. Recent advancement of imidazolate framework (ZIF-8) based nanoformulations for synergistic tumor therapy. Nanoscale 2019; 11:21030-21045.
24. Siddique S, Chow JC. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials 2020; 10:1700-1739.
25. Ebrahimian M, Shahgordi S, Yazdian-Robati R, Etemad L, Hashemi M, Salmasi Z. Targeted delivery of galbanic acid to colon cancer cells by PLGA nanoparticles incorporated into human mesenchymal stem cells. Avicenna J Phytomed 2022; 12:295-308.
26. Ebrahimian M, Hashemi M, Etemad L, Salmasi Z. Thymoquinone-loaded mesenchymal stem cell-derived exosome as an efficient nano-system against breast cancer cells. Iran J Basic Med Sci 2022; 25:723-731.
27. Lyu Y, Tian J, Li J, Chen P, Pu K. Semiconducting polymer nanobiocatalysts for photoactivation of intracellular redox reactions. Angew Chem Int Ed Engl 2018; 57:13484-13488.
28. Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew Chem Int Ed Engl 2018; 57:3995-3998.
29. Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 2011; 26:3927-3931.
30. Zhao M, Deng K, He L, Liu Y, Li G, Zhao H, et al. Core–shell palladium nanoparticle@ metal–organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 2014; 136:1738-1741.
31. Khoshbin Z, Zamanian J, Davoodian N, Mohammad Danesh N, Ramezani M, Alibolandi M, et al. A simple and ultrasensitive metal-organic framework-based aptasensor for fluorescence detection of ethanolamine. Spectrochim Acta A Mol Biomol Spectrosc 2022; 267:120488.
32. Anbiaee G, Khoshbin Z, Zamanian J, Samie A, Ramezani M, Alibolandi M, et al. A fluorescent aptasensor for quantification of cocaine mediated by signal amplification characteristics of UiO-66/AuNPs nanocomposite. Anal Biochem 2023; 674:115193.
33. Wu J, Li S, Wei H. Multifunctional nanozymes: Enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz 2018; 3:367-382.
34. Sheng J, Wang L, Han Y, Chen W, Liu H, Zhang M, et al. Dual roles of protein as a template and a sulfur provider: A general approach to metal sulfides for efficient photothermal therapy of cancer. Small 2018; 14:1702529.
35. Huang R, Zhang C, Bu Y, Li Z, Zheng X, Qiu S, et al. A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@ CuS: Photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis. Biomaterials 2021; 277:121088.
36. Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, et al. When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting. Adv Mater 2015; 27:4752-4759.
37. Zhou Z, Li B, Shen C, Wu D, Fan H, Zhao J, et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near‐infrared‐ii window. Small 2020; 16:2004173.
38. Wei J, Li J, Sun D, Li Q, Ma J, Chen X, et al. A novel theranostic nanoplatform based on Pd@ Pt‐PEG‐Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv Funct Mater 2018; 28:1706310.
39. Zhen W, Liu Y, Lin L, Bai J, Jia X, Tian H, et al. BSA‐IrO2: Catalase‐like nanoparticles with high photothermal conversion efficiency and a high X‐ray absorption coefficient for anti‐inflammation and antitumortheranostics. Angew Chem Int Ed Engl 2018; 130:10466-10470.
40. Feng L, Dong Z, Liang C, Chen M, Tao D, Cheng L, et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018; 181:81-91.
41. Xiao Z, Jiang X, Li B, Liu X, Huang X, Zhang Y, et al. Hydrous RuO2 nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo. Nanoscale 2015; 7:11962-11970.
42. Zamanian J, Khoshbin Z, Hosseinzadeh H, Danesh NM, Khakshour Abdolabadi A, Abnous K, et al. An ultrasensitive detection platform for cocaine: Aptasensing strategy in capillary tube. Front Chem 2022; 10:996358-996367.
43. Lin Y, Ren J, Qu X. Nano‐gold as artificial enzymes: Hidden talents. Adv Mater 2014; 26:4200-4217.
44. He W, Zhou Y-T, Wamer WG, Hu X, Wu X, Zheng Z, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013; 34:765-773.
45. Hu S-H, Chen Y-Y, Liu T-C, Tung T-H, Liu D-M, Chen S-Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chem Commun 2011; 47:1776-1778.
46. Li J, Song S, Long Y, Yao S, Ge X, Wu L, et al. A general one-pot strategy for the synthesis of Au@ multi-oxide yolk@ shell nanospheres with enhanced catalytic performance. Chem Sci J 2018; 9:7569-7574.
47. Sun T-W, Zhu Y-J, Chen F, Qi C, Lu B-Q, Wu J, et al. Superparamagnetic yolk–shell porous nanospheres of iron oxide@ magnesium silicate: synthesis and application in high-performance anticancer drug delivery. RSC Adv 2016; 6:103399-103411.
48. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y. Synthesis of bimetallic Au@ Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. J Mater Chem 2010; 22:6310-6318.
49. Du X, Zhao C, Zhou M, Ma T, Huang H, Jaroniec M, et al. Hollow carbon nanospheres with tunable hierarchical pores for drug, gene, and photothermal synergistic treatment. Small 2017; 13:1602592.
50. Zhou L, Jing Y, Liu Y, Liu Z, Gao D, Chen H, et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics 2018; 8: 663–675.
51. Wang X, Liu Y, Liu Z, Hu J, Guo H, Wang F. Synergistic chemo-photothermal therapy of tumor by hollow carbon nanospheres. Biochem Biophys Res Commun 2018; 495:867-872.
52. Wu MX, Yang YW. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Adv Mater 2017; 29:1606134.
53. Mallakpour S, Nikkhoo E, Hussain CM. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord Chem Rev 2022; 451:214262.
54. Yang B, Ding L, Yao H, Chen Y, Shi J. A metal‐organic framework (MOF) fenton nanoagent‐enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv Mater 2020; 32:1907152.
55. Cao J, Qiao B, Luo Y, Cheng C, Yang A, Wang M, et al. A multimodal imaging-guided nanoreactor for cooperative combination of tumor starvation and multiple mechanism-enhanced mild temperature phototherapy. Biomater Sci 2020; 8:6561-6578.
56. Meng Z, Chao Y, Zhou X, Liang C, Liu J, Zhang R, et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 2018; 12:9412-9422.
57. Chang M, Hou Z, Wang M, Yang C, Wang R, Li F, et al. Single‐atom Pd nanozyme for ferroptosis‐boosted mild‐temperature photothermal therapy. Angew Chem Int Ed Engl 2021; 60:12971-12979.
58. Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, et al. Stimuli‐responsive manganese single‐atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem Int Ed Engl 2021; 133:9566-9574.
59. Shao B, Zhu Y, Du Y, Yang D, Gai S, He F, et al. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy. J Colloid Interface Sci 2022; 628:419-434.
60. Jia T, Li D, Du J, Fang X, Gerasimov V, Ågren H, et al. A bimodal type of AgPd plasmonic blackbody nanozyme with boosted catalytic efficacy and synergized photothermal therapy for efficacious tumor treatment in the second biological window. J Nanobiotechnology 2022; 20:1-19.
61. Xu M, Gao H, Ji Q, Chi B, He L, Song Q, et al. Construction multifunctional nanozyme for synergistic catalytic therapy and phototherapy based on controllable performance. J Colloid Interface Sci 2022; 609:364-374.
62. Zheng Z, Jia Z, Qin Y, Dai R, Chen X, Ma Y, et al. All‐in‐one zeolite–carbon‐based nanotheranostics with adjustable NIR‐II window photoacoustic/fluorescence imaging performance for precise NIR‐II photothermal‐synergized catalytic antitumor therapy. Small 2021; 17:2103252.
63. Tang M, Zhang Z, Ding C, Li J, Shi Y, Sun T, et al. Two birds with one stone: Innovative ceria-loaded gold@ platinum nanospheres for photothermal-catalytic therapy of tumors. J Colloid Interface Sci 2022; 627:299-307.
64. Wang S, Zhang Q, Zeng N, Qi P, Huang C, Huang Q. Injectable hydrogel system for camptothecin initiated nanocatalytic tumor therapy with high performance. Front Oncol 2023; 16648714:904960.
65. Wu F, Chen H, Liu R, Suo Y, Li Q, Zhang Y, et al. Modulation of the tumor immune microenvironment by Bi2Te3‐Au/Pd‐based theranostic nanocatalysts enables efficient cancer therapy. Adv Healthc Mater 2022; 11:2200809.
66. Zhao M, Li Y, Liu Y, Bai L, Ma J, Ren M, et al. Single gold nanostars achieve inherent cascade catalytic and near-infrared photothermal activities for efficient tumor therapy. Bioconjug Chem 2022; 33:1934-1943.
67. Samie A, Salimi A, Garrison JC. Exploration of relative π-electron localization in naphthalene aromatic rings by C–H⋯ π interactions: experimental evidence, computational criteria, and database analysis. CrystEngComm 2019; 21:6432-6445.
68. Tavakoli-Quchani F, Salimi A, Notash B, Samie A, Garrison JC. Polymorphism in carboxamide compounds with high-Z′ crystal structures. CrystEngComm 2023; 25:299-308.
69. Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, et al. Accelerated wound healing with a diminutive scar through cocrystal engineered curcumin.
Mol Pharm 2023; 20:5090-5107.
70. He L, Ji Q, Chi B, You S, Lu S, Yang T, et al. Construction nanoenzymes with elaborately regulated multi-enzymatic activities for photothermal-enhanced catalytic therapy of tumor. Colloids Surf B Biointerfaces 2023; 222:113058.
71. Yin N, Wang Y, Huang Y, Cao Y, Jin L, Liu J, et al. Modulating nanozyme‐based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv Sci (Weinh) 2023; 10:2204937.
72. Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res 2020; 13:2898-2908.
73. Liang S, Deng X, Chang Y, Sun C, Shao S, Xie Z, et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano lett 2019; 19:4134-4145.
74. Li Z, Han J, Yu L, Qian X, Xing H, Lin H, et al. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers. Adv Funct Mater 2018; 28:1800145.
75. Wang S, Zhang Q, Chen M, Zeng N, Huang Q. Nanozyme hydrogels for self-augmented sonodynamic/photothermal combination therapy. Front Oncol 2022; 12:888855.
76. Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, et al. Intelligent MoS2–CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials 2021; 268:120545.
77. Yao C, Wang W, Wang P, Zhao M, Li X, Zhang F. Near‐infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH‐/H2O2‐responsive O2‐evolving synergetic cancer therapy. Adv Mater 2018; 30:1704833.
78. Huang H, Wang X, Wang W, Qu X, Song X, Zhang Y, et al. Injectable hydrogel for postoperative synergistic photothermal-chemodynamic tumor and anti-infection therapy. Biomaterials 2022; 280:121289.
79. Liu F, Lin L, Zhang Y, Wang Y, Sheng S, Xu C, et al. A Tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv Mater 2019; 31: e1902885.
80. Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, et al. Robust and universal SERS sensing platform for multiplexed detection of Alzheimer’s disease core biomarkers using PAapt-AuNPs conjugates. ACS Sens 2019; 4:2140-2149.
81. Qi G, Zhang Y, Wang J, Wang D, Wang B, Li H, et al. Smart plasmonic nanozyme enhances combined chemo-photothermal cancer therapy and reveals tryptophan metabolic apoptotic pathway. Anal Chem 2019; 91:12203-12211.
82. Chen T, Huang R, Liang J, Zhou B, Guo XL, Shen XC, et al. Natural polyphenol–vanadium oxide nanozymes for synergistic chemodynamic/photothermal therapy. Chemistry 2020; 26:15159-15169.
83. Wang M, Chang M, Chen Q, Wang D, Li C, Hou Z, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 2020; 252:120093.
84. Samie A, Salimi A. Conformational variation of ligands in mercury halide complexes; high and low Z′ structures. CrystEngComm 2019; 21:4951-4960.
85. Samie A, Salimi A. Orientation-dependent conformational polymorphs in two similar pyridine/pyrazine phenolic esters. CrystEngComm 2019; 21:3721-3730.
86. Zhu X, Gong Y, Liu Y, Yang C, Wu S, Yuan G, et al. Ru@ CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials 2020; 242:119923.
87. Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y. Ultrasmall alloy nanozyme for ultrasound-and near-infrared light-promoted tumor ablation. ACS Nano 2021; 15:7774-7782.
88. Qian X, Shi R, Chen J, Wang Y, Han X, Sun Y, et al. The single-atom iron nanozyme mimicking peroxidase remodels energy metabolism and tumor immune landscape for synergistic chemodynamic therapy and photothermal therapy of triple-negative breast cancer. Front Bioeng Biotechnol 2022; 10: 1026761.
89. Samie A, Salimi A, Garrison JC. Coordination chemistry of mercury(ii) halide complexes: A combined experimental, theoretical and (ICSD & CSD) database study on the relationship between inorganic and organic units. Dalton Trans 2020; 49:11859-11877.
90. Wang J, Ye J, Lv W, Liu S, Zhang Z, Xu J, et al. Biomimetic nanoarchitectonics of hollow mesoporous copper oxide-based nanozymes with cascade catalytic reaction for near infrared-II reinforced photothermal-catalytic therapy. ACS Appl Mater Interfaces 2022; 14:40645-40658.
91. Wang C, Zhao P, Jiang D, Yang G, Xue Y, Tang Z, et al. In situ catalytic reaction for solving the aggregation of hydrophobic photosensitizers in tumor. ACS Appl Mater Interfaces 2020; 12:5624-5632.
92. Wang X, Tian Y, Liao X, Tang Y, Ni Q, Sun J, et al. Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. J Colloid Interface Sci 2020; 565:483-493.
93. Wang Q, Dai Y, Xu J, Cai J, Niu X, Zhang L, et al. All‐in‐one phototheranostics: single laser triggers NIR‐II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv Funct Mater 2019; 29:1901480.
94. Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 2019; 9:3443-3458.
95. Xu P, Wang X, Li T, Wu H, Li L, Chen Z, et al. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Nanoscale 2020; 12:4051-4060.
96. Yang Y, Zhu D, Liu Y, Jiang B, Jiang W, Yan X, et al. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 2020; 12:13548-13557.
97. Yang H, Xu B, Li S, Wu Q, Lu M, Han A, et al. A photoresponsive nanozyme for synergistic catalytic therapy and dual phototherapy. Small 2021; 17:2007090.
98. Zeng L, Cheng H, Dai Y, Su Z, Wang C, Lei L, et al. In vivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl Mater Interfaces 2020; 13:233-244.
99. Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 nanozyme for combined trimodal imaging-guided photodynamic therapy and NIR-II responsive photothermal therapy. Inorg Chem 2022; 61:6852-6860.
100. Li X, Cao Y, Xu B, Zhao Y, Zhang T, Wang Y, et al. A bimetallic nanozyme with cascade effect for synergistic therapy of cancer. ChemMedChem 2022; 17: e202100663.
101. Kang K, Wang L, Yu K, Ma Y, Qu F, Lin H. Z-scheme MoS2/Co3S4@ PEG nanoflowers: Intracellular NIR-II photocatalytic O2 production facilitating hypoxic tumor therapy. Biomater Adv 2023; 144:213168.
102. Wan G-Y, Liu Y, Chen B-W, Liu Y-Y, Wang Y-S, Zhang N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med 2016; 13:325-338.
103. Klyta M, Ostasiewicz P, Jurczyszyn K, Duś K, Latos‐Grażyński L, Pacholska‐Dudziak E, et al. Vacata‐and divacataporphyrin: New photosensitizers for application in photodynamic therapy—an in vitro study.
Lasers Surg Med 2011; 43:607-613.
104. Xu H, Zhang X, Han R, Yang P, Ma H, Song Y, et al. Nanoparticles in sonodynamic therapy: State of the art review. RSC Adv 2016; 6:50697-50705.
105. Tang X, Lu C, Xu X, Ding Z, Li H, Zhang H, et al. A visible and near-infrared light dual responsive “signal-off” and “signal-on” photoelectrochemical aptasensor for prostate-specific antigen. Biosens Bioelectron 2022; 202:113905.
106. Niki E, Noguchi N. Dynamics of anti-oxidant action of vitamin E. Acc Chem Res 2004; 37:45-51.
107. Etemad L, Salmasi Z, Moosavian Kalat SA, Moshiri M, Zamanian J, Kesharwani P, et al. An overview on nanoplatforms for statins delivery: Perspectives for safe and effective therapy. Environ Res 2023; 234:116572.
108. Tian Q, Xue F, Wang Y, Cheng Y, An L, Yang S, et al. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021; 39:101162.
109. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J Am Chem Soc 2018; 141:849-857.
110. Zhao D-H, Li C-Q, Hou X-L, Xie X-T, Zhang B, Wu G-Y, et al. Tumor microenvironment-activated theranostics nanozymes for fluorescence imaging and enhanced chemo-chemodynamic therapy of tumors. ACS Appl Mater Interfaces 2021; 13:55780-55789.