Investigating therapeutic efficacy of dacarbazine and temozolomide, alone and in combination with BRAF(V600E) siRNA in A375 human melanoma cell line

Document Type : Original Article

Authors

1 Medical Biotechnology. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Genetics and Molecular Biology. School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

10.22038/ijbms.2025.84187.18208

Abstract

Objective(s): Melanoma is one of the most aggressive and deadly skin cancers. Despite advances, effective melanoma treatment is challenging, often requiring a shift from individual therapies to combination approaches. This study explores whether combining dacarbazine (DTIC) and temozolomide (TMZ) with the siRNA approach holds promise for melanoma treatment.
Materials and Methods: To determine the IC50 values of DTIC and TMZ, the A375 cell line was treated with different drug concentrations for 24–72 hr. The best exposure time of BRAF siRNA transfection was performed. Subsequently, cell viability (using the MTT assay), apoptosis (by flow cytometry), and gene expression levels of B-Raf proto-oncogene, serine/threonine kinase (BRAF), caspase 3 (CASP3), and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) genes (by quantitative real-time PCR) were assessed in the treated groups (i.e., control, negative controls, DTIC alone, TMZalone, DTIC+ TMZ, BRAF(V600E)siRNA alone, siRNA+ DTIC, siRNA+ TMZ, and siRNA+ DTIC+ TMZ groups). 
Results: Cell viability significantly decreased in the chemotherapy-only and siRNA+drug groups, although no difference was observed between them. The apoptosis percentage in all treated groups indicated a significant difference compared to the control group. The expression of the BRAF gene notably decreased in the BRAF (V600E) siRNA +drug groups compared to the chemotherapy groups. Despite overexpression of CASP3 in the chemotherapy-treated groups, the most effective enhancement was noted in the siRNA+DTIC+TMZ group (P<0.0001). The mean expression of the PIK3R3 gene in siRNA+chemotherapy groups revealed a notable reduction. 
Conclusion: These findings suggest that the siRNA-transfected treatment groups have the potential to provide therapeutic effects comparable to those of chemotherapy. 

Keywords

Main Subjects


1. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther 2019; 20: 1366–1379. 
2. International Agency for Research on Cancer. Cancer Tomorrow. Estimated number of new cases 2020–2040: Melanoma skin. 2022.
3. International Agency for Research on Cancer. Cancer Tomorrow. Estimated number of deaths 2020–2040: Melanoma skin. 2022.
4. Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther 2021; 6:424-462. 
5. Alqathama A. BRAF in malignant melanoma progression and metastasis: potentials and challenges. Am J Cancer Res 2020; 10: 1103–1114. 
6. He H, Nan X, Liu S, Zhang L, Yang Z, Wu Y, et al. Anticancer effects of combinational treatment with BRAFV600E siRNA and PI3K pathway inhibitors in melanoma cell lines harboring BRAFV600E. Oncol Lett 2018; 16: 632–642.
7. Lopes J, Rodrigues CMP, Gaspar MM, Pinto Reis C. Melanoma management: From epidemiology to treatment and latest advances. Cancers 2022; 14: 4652-4675.
8. Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Curr Res Pharmacol Drug Discov 2022; 3: 100103.
9. Salvador D, Bastos V, Oliveira H. Combined therapy with dacarbazine and hyperthermia induces cytotoxicity in A375 and MNT-1 melanoma cells. Int J Mol Sci 2022; 23: 3586-3602.
10. Wilson MA, Schuchter LM. Chemotherapy for melanoma. Cancer Treat Res 2016; 167: 209–229
11. Chalbatani G M, Dana H, Gharagozlo E, Mahmoodzad H, Zeinalinia E, Rezaeian O, et al. Microrna a new gate in cancer and human disease: A review. J Biol Sci 2017; 17: 247–254.
12. De Jesus D K O, Da Silva Neto J F, De Godoy S M. RNAi gene therapy in cancer treatment. Brazilian J Dev 2023; 9: 15008–15019. 
13. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: State of the art. Signal Transduct Target Ther 2020; 5: 101-125.
14. Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 2017; 43: 1391–1401. 
15. Walther W, Schlag P M. Current status of gene therapy for cancer. Curr Opin Oncol 2013; 25: 659–664.
16. Jiménez-Mora E, Gallego B, Díaz-Gago S, Lasa M, Baquero P, Chiloeches A. V600E BRAF inhibition induces cytoprotective autophagy through AMPK in thyroid cancer cells. Int J Mol Sci 2021; 22: 6033-6049.
17. Zandi M. Cytotoxicity of Taxol in combination with Vincristine and Vinblastine against A375 cell line. Gene Cell Tissue 2021; 8: doi:10.5812/gct.114359.
18. Yoon C, Lu J, Ryeom S W, Simon M C, Yoon S S. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis 2021; 12: 749-759.
19. Wang G, Yang X, Li C, Cao X, Luo X, Hu J. PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. Mol Cancer Ther 2014; 13:1837-1847.
20. Shannan B, Perego M, Somasundaram R, Herlyn M. Heterogeneity in melanoma. Cancer Treat Res 2016; 167: 1–15.
21. Villani A, Scalvenzi M, Fabbrocini G, Ocampo-Candiani J, Ocampo-Garza S S. Looking into a better future: novel therapies for metastatic melanoma. Dermatol Ther Heidelb 2021; 11: 751–767.
22. Naumann S C, Roos W P, Jöst E, Belohlavek C, Lennerz V, Schmidt C W, et al. Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: Response related to MGMT, MMR, DSBs, and p53. Br J Cancer 2009; 100: 322–333.
23. Ruan R, Chen M, Sun S, Wei P, Zou L, Liu J, et al. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Sci Rep 2016; 6: 29159-29169.
24. Al-Qatati A, Aliwaini S. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol Lett 2017; 14: 7993–7999.
25. Lee S G, Lee D G, Joo Y H, Chung N. Synergistic inhibitory effects of the oxyresveratrol and dacarbazine combination against melanoma cells. Oncol Lett 2021; 22: 667-677.
26. Fontes S S, Nogueira M L, Dias R B, Gurgel Rocha C A, Soares M B P, Vannier-Santos M A, et al. Combination therapy of curcumin and disulfiram synergistically inhibits the growth of B16-F10 melanoma cells by inducing oxidative stress. Biomolecules 2022; 12: 1600-1615.
27. Sadhu S S, Wang S, Averineni R K, Seefeldt T, Yang Y, Guan X. In-vitro and in-vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine. Melanoma Res 2016; 26: 572–579. 
28. Stevens M F G, Hickman J A, Langdon S P, Chubb D, Vickers L, Stone R, et al. Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M&B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 1987; 47: 5846–5852.
29. Teimouri F, Nikfar S, Abdollahi M. Efficacy and side effects of dacarbazine in comparison with temozolomide in the treatment of malignant melanoma: a meta-analysis consisting of 1314 patients. Melanoma Res 2013; 23: 381–389.
30. Samulitis BK, Dorr RT, Chow HH-S. Interaction of dacarbazine and imexon, in vitro and in vivo, in human A375 melanoma cells. Anticancer Res 2011; 31: 2781–2785. 
31. Wang Y, Gao S, Wang W, Liang J. Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Oncol Lett 2016; 14: 5732–5738.
32. Jin J-L, Gong J, Yin T-J, Lu Y-J, Xia J-J, Xie Y-Y, et al. PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. Eur J Pharmacol 2011; 654: 17–25.
33. Chen M, Rose AE, Doudican N, Osman I, Orlow SJ. Celastrol synergistically enhances temozolomide cytotoxicity in melanoma cells. Mol Cancer Res 2009; 7:1946-53.
34. Zhao Y, Liu T, Ardana A, Fletcher NL, Houston ZH, Blakey I, et al. Investigation of a dual siRNA/chemotherapy delivery system for breast cancer therapy. ACS Omega 2022; 7: 17119–17127.
35. Zuckerman JE, Hsueh T, Koya RC, Davis ME, Ribas A. siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol 2011; 453–460.
36. Mohammadi A, Najafi S, Amini M, Baradaran B, Firouzamandi M. B7H6 silencing increases chemosensitivity to dacarbazine and suppresses cell survival and migration in cutaneous melanoma. Melanoma Res 2023; 33: 173–183. 
37. Hajimoradi Javarsiani M, Haghjooy Javanmard S, Sajedianfard J. In vitro inhibition of melanoma (B16f10) viability and colonization through combining metformin and dacarbazine. Middle East J Cancer 2020;11: 159–167.
38. Birkeland E, Busch C, Berge EO, Geisler J, Jonsson G, Lillehaug JR, et al. Low BRAF and NRAS expression levels are associated with clinical benefit from DTIC therapy and prognosis in metastatic melanoma. Clin Exp Metastasis 2013; 30: 867–876.
39. Jodari Mohammadpour Z, Mohammadzadeh R, Javadrashid D, Baghbanzadeh A, Doustvandi MA, Barpour N, et al. Combination of SIX4-siRNA and temozolomide inhibits the growth and migration of A-172 glioblastoma cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2023; 396: 2741–2751.
40. Allahyarzadeh Khiabani N, Doustvandi MA, Mohammadnejad F, Salmani Hassan Kohal E, Boushehri N, Jafarlou M, et al. Combination of B7H6-siRNA and temozolomide synergistically reduces stemness and migration properties of glioblastoma cancer cells. Exp Cell Res 2023; 429:113667. 
41. Kiyohara E, Tamai K, Katayama I, Kaneda Y. The combination of chemotherapy with HVJ-E containing Rad51 siRNA elicited diverse anti-tumor effects and synergistically suppressed melanoma. Gene Ther 2012;19: 734–41.
42. Al Hashmi M, Sastry KS, Silcock L, Chouchane L, Mattei V, James N, et al. Differential responsiveness to BRAF inhibitors of melanoma cell lines BRAF V600E-mutated. J Transl Med 2020; 18: 192-200.
43. Zhong J, Yan W, Wang C, Liu W, Li X, Zoun Z, et al. BRAF inhibitor resistance in melanoma: mechanisms and alternative therapeutic strategies. Curr Treat Options Oncol 2022;23: 1503–1521.
44. Bolduc V, Zou Y, Ko D, Bönnemann CG. siRNA-mediated allele-specific silencing of a COL6A3 mutation in a cellular model of dominant Ullrich muscular dystrophy. Mol Ther Acids 2023;3: e147.
45. Yancovitz M, Litterman A, Yoon J, Ng E, Shapiro RL, Berman RS, et al. Intra- and inter-tumor heterogeneity of BRAF(V600E) mutations in primary and metastatic melanoma. PLoS One 2012;7: e29336.
46. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 2006;25: 3357–3364.
47. Sakaizawa K, Ashida A, Kiniwa Y, Okuyama R. BRAF mutation heterogeneity in melanoma lesions. Acta Derm Venereol 2020;100: adv00045.
48. Ng MF, Simmons JL, Boyle GM. Heterogeneity in melanoma. Cancers 2022; 14: 3030-3048. 
49. Seftor EA, Seftor REB, Weldon DS, Kirsammer GT, Margaryan NV, Gilgur A, et al. Melanoma tumor cell heterogeneity: A molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin Oncol 2014;41: 259–266.
50. Motwani J, Eccles MR. Genetic and genomic pathways of melanoma development, invasion and metastasis. Genes 2021;12: 1543-1563.
51. Arozarena I, Goicoechea I, Erice O, Ferguson J, Margison GP, Wellbrock C. Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells. Mol Cancer 2014;154-166.
52. Hoseini Soflaee M, Kesavan R, Sahu U, Tasdogan A, Vill E, Djabari Z, et al. Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat Commun 2022;13: 2698-2711. 
53. Jung HS, Shin YK. The potential RNAi-based combination therapeutics. Arch Pharm Res 2011; 34: 1–2
54. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004;10: 12–18.
55. Zaidi SSA, Fatima F, Zaidi SAA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: Challenges and strategies. J Nanobiotechnology 2023;21:381-395.
56. Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex AT. siRNA therapeutics and its challenges: Recent advances in effective delivery for cancer therapy. Open Nano 2022; 7:100063.