1. Ropper AE, Ropper AH. Acute spinal cord compression. New Engl J Med 2017; 376: 1358-1369.
2. Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, et al. Acute spinal cord injury: Pathophysiology and pharmacological intervention. Mol Med Rep 2021; 23: 1-18.
3. Löfvenmark I, Norrbrink C, Nilsson-Wikmar L, Hultling C, Chakandinakira S, Hasselberg M. Traumatic spinal cord injury in Botswana: Characteristics, aetiology and mortality. Spinal Cord 2015; 53: 150-154.
4. Injury SC. Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 2020; 21: 7533-7568.
5. Yuanhui W, Lei Z, Guodong P, Jing L, Hongrui Z, Xu S, et al. Traditional chinese medicine comprehensive therapy for the improvement of motor function in spinal cord injury patients. J Tradit Chin Med 2016; 36: 618-624.
6. Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, et al. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127: 110136.
7. Rao S, Lin Y, Lin R, Liu J, Wang H, Hu W, et al. Traditional chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnology 2022; 20: 278-293.
8. Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24: 340-366.
9. Liu S, Yu G, Song G, Zhang Q. Green tea polyphenols protect PC12 cells against H(2)O(2)-induced damages by up-regulating lncRNA MALAT1. Int J Immunopathol Pharmacol 2019; 33: 2058738419872624.
10. Akhtar N, Haqqi TM. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res Ther 2011; 13: R93-109.
11. Du Y, Ding H, Vanarsa K, Soomro S, Baig S, Hicks J, et al. Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines, and improving intestinal permeability. Nutrients 2019; 11: 1743-1756.
12. Cao J, Yu X, Liu J, Fu J, Wang B, Wu C, et al. Ruxolitinib improves the inflammatory microenvironment, restores glutamate homeostasis, and promotes functional recovery after spinal cord injury. Neural Regen Res 2024; 19: 2499-2512.
13. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv 2019; 5: eaav5086-5100.
14. Chang F-H, Wang Y-H, Jang Y, Wang C-W. Factors associated with quality of life among people with spinal cord injury: Application of the international classification of functioning, disability and health model. Arch Phys Med Rehabil 2012; 93: 2264-2270.
15. Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, et al. Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 2004; 10: 389-395.
16. Yang J, Lin N, Li S, Dong Z, Wang D, Liu Y, et al. Cannabidiol alleviates oral mucositis by inhibiting PI3K/Akt/NF-κB-mediated pyroptosis. Balkan Med J 2024; 41: 286-297.
17. Qi X, Lin W, Wu Y, Li Q, Zhou X, Li H, et al. CBD Promotes Oral Ulcer Healing via Inhibiting CMPK2-Mediated Inflammasome. J Dent Res 2022; 101: 206-215.
18. Sun Y, Zhang L, Lu B, Wen J, Wang M, Zhang S, et al. Hydrogen sulphide reduced the accumulation of lipid droplets in cardiac tissues of db/db mice via Hrd1 S‐sulfhydration. J Cell Mol Med 2021; 25: 9154-9167.
19. Zhang Y, Zhang S, Li B, Luo Y, Gong Y, Jin X, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc Res 2022; 118: 785-797.
20. Sun J, Xu J, Liu Y, Lin Y, Wang F, Han Y, et al. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing reactive oxygen species, endoplasmic reticulum stress, and Pannexin-1-mediated ferroptosis. Biomol Biomed 2023; 23: 825-837.
21. Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 2020; 39: 210-225.
22. Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, et al. Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol 2018; 112: 608-615.
23. Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, et al. Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8: 245-273.
24. Ahuja CS, Wilson JR, Nori S, Kotter M, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017; 3: 17018.
25. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 2020; 21: 7533-7568.
26. Zhang T, Gao K, Yan TZ, Lyu CW, Lyu CL. Potential therapeutic mechanism of traditional Chinese medicine monomers on neurological recovery after spinal cord injury. Chin Med J (Engl) 2021; 134: 1681-1683.
27. Huang Z, Wang J, Li C, Zheng W, He J, Wu Z, et al. Application of natural antioxidants from traditional Chinese medicine in the treatment of spinal cord injury. Front Pharmacol 2022; 13: 976757-976773.
28. Yao C, Cao X, Yu B. Revascularization after traumatic spinal cord injury. Front Physiol 2021; 12: 631500-631509.
29. Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 2014; 31: 541-552.
30. Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, et al. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16: 969056-969067.
31. Nan J, Nan C, Ye J, Qian L, Geng Y, Xing D, et al. EGCG protects cardiomyocytes against hypoxia-reperfusion injury through inhibition of OMA1 activation. J Cell Sci 2019; 132: jcs220871.
32. Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, et al. FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 2021; 122: 154840.
33. Tuo Q-z, Liu Y, Xiang Z, Yan H-F, Zou T, Shu Y, et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 2022; 7:59-74.
34. Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 2021; 284:119935.
35. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci 2019; 116: 2672-2680.