1. Henkin RI. Inhaled insulin-intrapulmonary, intranasal, and other routes of administration: Mechanisms of action. Nutrition 2010; 26:33-39.
2. Khodaverdi E, Heidari Z, Tabassi SA, Tafaghodi M, Alibolandi M, Tekie FS, et al. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech 2015; 16:140-149.
3. Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: Past, present and future. Int J Pharm Investig 2016; 6:1-9.
4. Shen YB, Du Z, Tang C, Guan YX, Yao SJ. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm 2016; 505:223-233.
5. Liu H, Shan X, Yu J, Li X, Hu L. Recent advances in inhaled formulations and pulmonary insulin delivery systems. Curr Pharm Biotechnol 2020; 21:180-193.
6. Okamoto H, Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev 2008; 60:433-446.
7. Richardson PC, Boss AH. Technosphere insulin technology. Diabetes Technol Ther 2007; 9 Suppl 1:S65-S72.
8. Neumiller JJ, Campbell RK, Wood LD. A review of inhaled technosphere insulin. Ann Pharmacother 2010; 44:1231-1239.
9. Mitta SG, Tanvi S, Bhargavi U, Ruchitha V. An Overview on Pulmonary Insulin. Glob Acad J Pharm Drug Res 2024; 6:12-19.
10. Karmakar S, Bhowmik M, Laha B, Manna S. Recent advancements on novel approaches of insulin delivery. Med Nov Technol Devices 2023; 19:100253.
11. Razavi Rohani SS, Abnous K, Tafaghodi M. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients. Int J Pharm 2014; 465:464-478.
12. Sou T, Kaminskas LM, Nguyen T-H, Carlberg R, McIntosh MP, Morton DA. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. Eur J Pharm Biopharm 2013; 83:234-243.
13. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 2010; 392:1-19.
14. Karimi M, Kamali H, Mohammadi M, Tafaghodi M. Evaluation of various techniques for production of inhalable dry powders for pulmonary delivery of peptide and protein. J Drug Deliv Sci Technol 2022; 69:103186.
15. Zillen D, Beugeling M, Hinrichs WL, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci 2021; 56:101497.
16. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv 2020; 17:77-96.
17. Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery–a review of their properties and fates. Carbohydr Polym 2022; 277:118784.
18. Li H-Y. Alginate-based inhalable particles for controlled pulmonary drug delivery. Alginate Biomaterial: Drug Delivery Strategies and Biomedical Engineering: Springer; 2023. p. 207-240.
19. Shen Y-B, Du Z, Tang C, Guan Y-X, Yao S-J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm 2016; 505:223-233.
20. Kantak MN, Bharate SS. Analysis of clinical trials on biomaterial and therapeutic applications of chitosan: A review. Carbohydrate Polymers 2022; 278:118999.
21. Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or discouraging for systemic disorders? Int J Pharm 2022; 614:121457.
22. Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2002; 103:311-321.
23. Rösen P, Ballhausen T, Stockklauser K. Impairment of endothelium dependent relaxation in the diabetic rat heart: mechanisms and implications. Diabetes Res Clin Pract 1996; 31 Suppl:S143-155.
24. Brown RH, Walters DM, Greenberg RS, Mitzner W. A method of endotracheal intubation and pulmonary functional assessment for repeated studies in mice. J Appl Physiol (1985) 1999; 87:2362-2365.
25. Chukwuma CI, Matsabisa MG, Erukainure OL, Ibeji CU, Islam MS. D-mannitol modulates glucose uptake ex vivo; suppresses intestinal glucose absorption in normal and type 2 diabetic rats. Food Bioscience 2019; 29:30-36.
26. Skyler JS, Cefalu WT, Kourides IA, Landschulz WH, Balagtas CC, Cheng SL, et al. Efficacy of inhaled human insulin in type 1 diabetes mellitus: a randomised proof-of-concept study. Lancet 2001; 357:331-335.
27. Silva CM, Ribeiro AJ, Figueiredo IV, Goncalves AR, Veiga F. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm 2006; 311:1-10.
28. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007; 24:2198-2206.
29. Jadach B, Świetlik W, Froelich A. Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. J Pharm Sci 2022; 111:1250-1261.
30. Bácskay I, Papp B, Pártos P, Budai I, Pető Á, Fehér P, et al. Formulation and evaluation of insulin-loaded sodium-alginate microparticles for oral administration. Pharmaceutics 2023; 16:46-61.
31. Chai Z, Dong H, Sun X, Fan Y, Wang Y, Huang F. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol 2020; 159:640-647.
32. Kimura Y, Watanabe K, Okuda H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 1996; 54:47-54.
33. Husni A, Pawestri S, Isnansetyo A. Blood glucose level and lipid profile of alloxan–induced diabetic rats treated with na-alginate from seaweed turbinaria ornata (Turner). J Agardh Jurnal Teknologi 2016; 78:7-14.
34. Shaikh MAJ, Gupta G, Afzal O, Gupta MM, Goyal A, Altamimi ASA, et al. Sodium alginate-based drug delivery for diabetes management: A review. Int J Biol Macromol 2023; 236:123986.
35. Dunne MJ, Yule DI, Gallacher DV, Petersen OH. Effects of alanine on insulin-secreting cells: Patch-clamp and single cell intracellular Ca2+ measurements. Biochim Biophys Acta 1990; 1055:157-164.
36. Sann L, Ruitton A, Mathieu M, Bourgeois J, Genoud J. Effect of intravenous L-alanine administration on plasma glucose, insulin and glucagon, blood pyruvate, lactate and beta-hydroxybutyrate concentrations in newborn infants. Study in term and preterm newborn infants. Acta Paediatr Scand 1978; 67:297-302.
37. Chashmniam S, Madani NH, Ghoochani BF, Safari-Alighiarloo
N, Khamseh ME. The metabolome profiling of obese and non-obese individuals: Metabolically healthy obese and unhealthy non-obese paradox. Iran J Basic Med Sci 2020; 23:186-194.
38. Porcellati F, Pampanelli S, Rossetti P, Busciantella Ricci N, Marzotti S, Lucidi P, et al. Effect of the amino acid alanine on glucagon secretion in non-diabetic and type 1 diabetic subjects during hyperinsulinaemic euglycaemia, hypoglycaemia and post-hypoglycaemic hyperglycaemia. Diabetologia 2007; 50:422-430.
39. van Sloun B, Goossens GH, Erdos B, Lenz M, van Riel N, Arts IC. The impact of amino acids on postprandial glucose and insulin kinetics in humans: A quantitative overview. Nutrients 2020; 12:3211-3233.
40. McClenaghan NH, Scullion SM, Mion B, Hewage C, Malthouse JPG, Flatt PR, et al. Prolonged L-alanine exposure induces changes in metabolism, Ca2+ handling, and desensitization of insulin secretion in clonal pancreatic β-cells. Clin Sci 2009; 116:341-351.
41. Genuth SM, Castro J. Effect of oral alanine on blood beta-hydroxybutyrate and plasma glucose, insulin, free fatty acids, and growth hormone in normal and diabetic subjects. Metabolism 1974; 23:375-386.
42. Asano T, Ninomiya H, Kan K, Yamamoto T, Okumura M. Plasma glucagon response to intravenous alanine in obese and non-obese subjects. Endocrinol Jpn 1989; 36:767-773.
43. Marttin E, Verhoef JC, Romeijn SG, Merkus FW. Effects of absorption enhancers on rat nasal epithelium in vivo: release of marker compounds in the nasal cavity. Pharm Res 1995; 12:1151-1157.
44. Merkus F, Schipper N, Hermens W, Romeijn S, Verhoef J. Absorption enhancers in nasal drug delivery: Efficacy and safety. J Control Release 1993; 24:201-208.
45. Chono S, Fukuchi R, Seki T, Morimoto K. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J Control Release 2009; 137:104-109.
46. Chono S, Togami K, Itagaki S. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin. Drug Dev Ind Pharm 2017; 43:1892-1898.
47. Mitra R, Pezron I, Li Y, Mitra AK. Enhanced pulmonary delivery of insulin by lung lavage fluid and phospholipids. Int J Pharm 2001; 217:25-31.
48. Wiessner JH, Hwang KJ. Binding of insulin to the external surface of liposomes: Effect of surface curvature, temperature, and lipid composition. Biochim Biophys Acta1982; 689:490-498.
49. Weijers RN. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 2012; 8:390-400.
50. Priyanka D, Prashanth KH, Tharanathan R. A review on potential antidiabetic mechanisms of chitosan and its derivatives. Carbohydr Polym Technol Appl 2022; 3:100188.
51. Liao Z, Zhang J, Liu B, Yan T, Xu F, Xiao F, et al. Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model. Molecules 2019; 24:1906.
52. Kondo Y, Nakatani A, Hayashi K, Ito M. Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol Pharm Bull 2000; 23:1458-1464.
53. Hayashi K, Ito M. Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharm Bull 2002; 25:188-192.
54. Yao HT, Huang SY, Chiang MT. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem Toxicol 2008; 46:1525-1534.
55. Chang H-P, Yao H-T, Chiang M-T. Effects of high and low molecular weight chitosan on plasma cholesterol, glucose and adipocytokines in diabetic rats induced by streptozotocin and nicotinamide. J Food Drug Anal 2012; 20:661-667.