Psoriasis: Immunological and genetic blueprints driving pathogenesis and potential for personalized therapies

Document Type : Review Article

Authors

1 Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan

2 College of Pharmacy, Alnoor University, Nineveh, Iraq

3 Ahl Al Bayt University, Kerbala, Iraq

4 Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India

5 Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India

6 Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India

7 Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India

8 Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India

9 Department of Dermatovenerology, Pediatric Dermatovenerology and AIDS, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, 100140, Uzbekistan

10 College of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq

11 Gilgamesh Ahliya University, Baghdad, Iraq

12 Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq

13 Pharmacy College, Al-Farahidi University, Iraq

10.22038/ijbms.2025.85335.18442

Abstract

Psoriasis is a long-lasting inflammatory skin condition that impacts millions globally. The occurrence of this disorder differs significantly across various areas, resulting from a complex interplay of genetic and environmental influences. In psoriasis, the pathogenesis represents a complex interaction of innate and adaptive immunity that plays a significant role in the disease manifestation process. Many genetic factors predispose to psoriasis, which is considered a polygenic disease. Several genes concerning pathways like NF-κB and PI3K/Akt that modulate the amplification of inflammatory response and keratinocyte dysregulation have been elaborated in the light of their differential expression, susceptibility loci, and polymorphisms. Such genetic insights could open a whole new avenue for precision medicine in which biomarkers and gene-targeting therapies are promising options for personalized treatment. This review emphasizes the need for complex investigations into psoriasis, from molecular mechanisms to clinical manifestations, to bridge the gap between basic research and therapeutic development by furthering the understanding of psoriasis and paving the way for innovative treatments addressing skin lesions and systemic effects.

Keywords

Main Subjects


1. Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020; 369: 1590.
2. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20: 1475-1493.
3. Kimmel GW, Lebwohl M. Psoriasis: Overview and Diagnosis. Evidence-Based Psoriasis 2018; 7: 1-16.
4. Zeng C, Tsoi LC, Gudjonsson JE. Dysregulated epigenetic modifications in psoriasis. Exp Dermatol 2021; 30: 1156-1166.
5. Mateu-Arrom L, Puig L. Genetic and epigenetic mechanisms of psoriasis. Genes (Basel) 2023; 14: 1619-1636.
6. Dand N, Mahil SK, Capon F, Smith CH, Simpson MA, Barker JN. Psoriasis and genetics. Acta Derm Venereol 2020; 100: adv00030-41.
7. Shellard EM, Rane SS, Eyre S, Warren RB. Functional genomics and insights into the pathogenesis and treatment of psoriasis. Biomolecules 2024; 14: 548-568.
8. Lu YW, Dong RJ, Yang LH, Liu J, Yang T, Xiao YH, et al. Identification of gene signatures and molecular mechanisms underlying the mutual exclusion between psoriasis and leprosy. Sci Rep 2024; 14: 2199-2212.
9. Babaie F, Omraninava M, Gorabi AM, Khosrojerdi A, Aslani S, Yazdchi A, et al. Etiopathogenesis of Psoriasis from genetic perspective: An updated review. Curr Genomics 2022; 23: 163-174.
10. Ni X, Lai Y. Keratinocyte: A trigger or an executor of psoriasis? J Leukoc Biol. 2020; 108: 485-491.
11. Liu AR, Sarkar N, Cress JD, de Jesus TJ, Vadlakonda A, Centore JT, et al. NF-κB c-Rel is a critical regulator of TLR7-induced inflammation in psoriasis. EBioMedicine 2024; 110: 105452-105474.
12. Ma JY, Shao S, Wang G. Antimicrobial peptides: Bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl) 2020; 133: 2966-2975.
13. Miura S, Garcet S, Li X, Cueto I, Salud-Gnilo C, Kunjravia N, et al. Cathelicidin antimicrobial peptide LL37 induces toll-like receptor 8 and amplifies IL-36γ and IL-17C in human keratinocytes. J Invest Dermatol 2023; 143: 832-841.
14. Santini SM, Lapenta C, Donati S, Spadaro F, Belardelli F, Ferrantini M. Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: Role of IL-23 and IL-12. PLoS One 2011; 6: e17364-17375.
15. Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol 2012; 39: 225-230.
16. Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, et al. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol 2011; 127: 787-794.
17. Dopytalska K, Ciechanowicz P, Wiszniewski K, Szymańska E, Walecka I. The role of epigenetic factors in psoriasis. Int J Mol Sci 2021; 22: 9294-9310.
18. Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Primers 2016; 2: 16082.
19. Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 2013; 34: 174-181.
20. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet 2021; 397: 1301-1315.
21. Wang Z, Zhou H, Zheng H, Zhou X, Shen G, Teng X, et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 2021; 17: 529-552.
22. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8: 235-285.
23. Yawalkar N, Tscharner GG, Hunger RE, Hassan AS. Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J Dermatol Sci 2009; 54: 99-105.
24. Vu A, Ulschmid C, Gordon KB. Anti-IL 23 biologics for the treatment of plaque psoriasis. Expert Opin Biol Ther 2022; 22: 1489-1502.
25. AlMutairi N, Eassa BI. Comparing the efficacy and safety of IL-17 inhibitors for treatment of moderate-to-severe psoriasis: A randomized double blind pilot study with a review of literature. Postepy Dermatol Alergol 2021; 38: 281-288.
26. McGeough MD, Wree A, Inzaugarat ME, Haimovich A, Johnson CD, Peña CA, et al. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest 2017; 127: 4488-4497.
27. Hu P, Wang M, Gao H, Zheng A, Li J, Mu D, Tong J. The role of helper T cells in psoriasis. Front Immunol 2021; 12: 788940-788950.
28. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 2011;131: 677-687.
29. Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289: 186-204.
30. Shi ZR, Mabuchi T, Riutta SJ, Wu X, Peterson FC, Volkman BF, Hwang ST. The chemokine, CCL20, and its receptor, CCR6, in the pathogenesis and treatment of psoriasis and psoriatic arthritis. J Psoriasis Psoriatic Arthritis 2023; 8: 107-117.
31. Shin JW, Kwon MA, Hwang J, Lee SJ, Lee JH, Kim HJ, et al. Keratinocyte transglutaminase 2 promotes CCR6(+) γδT-cell recruitment by up-regulating CCL20 in psoriatic inflammation. Cell Death Dis 2020; 11: 301-315.
32. Johnston A, Xing X, Guzman AM, Riblett M, Loyd CM, Ward NL, et al. IL-1F5, -F6, -F8, and -F9: A novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J Immunol 2011; 186: 2613-2622.
33. Traks T, Keermann M, Prans E, Karelson M, Loite U, Kõks G, et al. Polymorphisms in IL36G gene are associated with plaque psoriasis. BMC Med Genet 2019; 20: 10-18.
34. Ni X, Xu Y, Wang W, Kong B, Ouyang J, Chen J, et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. Nat Immunol 2022; 23: 1577-1587.
35. Toussirot E, Béreau M, Bossert M, Malkoun I, Lohse A. Occurrence of psoriatic arthritis during interferon beta 1a treatment for multiple sclerosis. Case Rep Rheumatol 2014; 2014: 949317-949320.
36. Johnson-Huang LM, Suárez-Fariñas M, Pierson KC, Fuentes-Duculan J, Cueto I, Lentini T, et al. A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin. J Invest Dermatol 2012; 132: 1177-1187.
37. Sobolev VV, Denisova EV, Chebysheva SN, Geppe NA, Korsunskaya IM. IL-6 gene expression as a marker of pathological state in psoriasis and psoriatic arthritis. Bull Exp Biol Med 2022; 173: 77-80.
38. Saggini A, Chimenti S, Chiricozzi A. IL-6 as a druggable target in psoriasis: focus on pustular variants. J Immunol Res 2014; 2014: 964069-964079.
39. Lachner J, Mlitz V, Tschachler E, Eckhart L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 2017; 7: 17446-17457.
40. Song W, Ren J, Xiang R, Kong C, Fu T. Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer. Oncoimmunology 2021; 10: 1987636-1987652.
41. Kenealy S, Manils J, Raverdeau M, Munoz-Wolf N, Barber G, Liddicoat A, et al. Caspase-11-mediated cell death contributes to the pathogenesis of imiquimod-induced psoriasis. J Invest Dermatol 2019; 139: 2389-2393.
42. Cai Y, Xue F, Quan C, Qu M, Liu N, Zhang Y, et al. A critical role of the IL-1β-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J Invest Dermatol 2019; 139: 146-156.
43. Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis 2022; 13: 81-94.
44. Fan T, Wang S, Yu L, Yi H, Liu R, Geng W, et al. Treating psoriasis by targeting its susceptibility gene Rel. Clin Immunol 2016; 165: 47-54.
45. Krajina I, Stupin A, Šola M, Mihalj M. Oxidative stress induced by high salt diet-possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants (Basel) 2022; 11: 1269-1299.
46. Zuo Y, Dai L, Li L, Huang Y, Liu X, Liu X, et al. ANGPTL4 regulates psoriasis via modulating hyperproliferation and inflammation of keratinocytes. Front Pharmacol 2022; 13: 850967-850984.
47. Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 2019; 311: 83-91.
48. Teng Y, Fan Y, Ma J, Lu W, Liu N, Chen Y, et al. The PI3K/akt pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 2021; 10: 1219-1235.
49. Armstrong AW, Harskamp CT, Ledo L, Rogers JH, Armstrong EJ. Coronary artery disease in patients with psoriasis referred for coronary angiography. Am J Cardiol 2012; 109: 976-980.
50. Forkel S, Schön M, Hildmann A, Claßen A, John SM, Danker K, Schön MP. Inositoylated platelet-activating factor (Ino-C2-PAF) modulates dynamic lymphocyte-endothelial cell interactions and alleviates psoriasis-like skin inflammation in two complementary mouse models. J Invest Dermatol 2014; 134: 2510-2520.
51. Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis. Front Immunol 2021; 12: 667690-667704.
52. Ciążyńska M, Olejniczak-Staruch I, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. The role of NLRP1, NLRP3, and AIM2 inflammasomes in psoriasis: Review. Int J Mol Sci 2021; 22: 5898-5909.
53. Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and psoriasis. Front Immunol 2023; 14: 1085448-1085462.
54. de Koning HD, Bergboer JG, van den Bogaard EH, van Vlijmen-Willems IM, Rodijk-Olthuis D, Simon A, et al. Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions. Exp Dermatol 2012; 21: 961-964.
55. Kawasaki T, Kawai T. Discrimination between self and non-self-nucleic acids by the innate immune system. Int Rev Cell Mol Biol 2019; 344: 1-30.
56. Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, et al. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 2016; 23: 416-425.
57. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156: 1193-1206.
58. Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q. Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med 2020; 76: 100869-100892.
59. Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 2020; 20: 143-157.
60. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev 2015; 265: 6-21.
61. Furue M, Hashimoto-Hachiya A, Tsuji G. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis. Int J Mol Sci 2019; 20: 5424-5442.
62. Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF. NF-κB: An essential transcription factor in psoriasis. J Dermatol Sci 2013; 69: 89-94.
63. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature 2014; 507: 448-454.
64. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med 2019; 11: 9665-9681.
65. Bissonnette R, Stein Gold L, Rubenstein DS, Tallman AM, Armstrong A. Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent. J Am Acad Dermatol 2021; 84: 1059-1067.
66. Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med 2020; 159: 87-102.
67. Liu S, Yuan X, Su H, Liu F, Zhuang Z, Chen Y. ZNF384: A potential therapeutic target for psoriasis and Alzheimer’s disease through inflammation and metabolism. Front Immunol 2022; 13: 892368-892386.
68. Zhang Q, Jeang KT. Long non-coding RNAs (lncRNAs) and viral infections. Biomed Pharmacother 2013; 3: 34-42.
69. Yang Y, Cheng J, Ren H, Zhao H, Gong W, Shan C. Tumor FOXP3 represses the expression of long non-coding RNA 7SL. Biochem Biophys Res Commun 2016; 472: 432-436.
70. Yazıcı S, Guner RY, Akyol M, Tuzemen Bayyurt EB, Arslan S. Research on hotair and 7SL-RNA Gene Expression Levels in Psoriasis vulgaris. Indian J Dermatol 2021; 66: 704.
71. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 2016; 375: 2335-2348.
72. Gori N, Caldarola G, Pirro F, De Simone C, Peris K. A case of guttate psoriasis during treatment with dupilumab. Dermatol Ther 2019; 32: e12998.
73. Jaulent L, Staumont-Sallé D, Tauber M, Paul C, Aubert H, Marchetti A, et al. De novo psoriasis in atopic dermatitis patients treated with dupilumab: A retrospective cohort. J Eur Acad Dermatol Venereol 2021; 35: e296-e7.
74. Fowler E, Silverberg JI, Fox JD, Yosipovitch G. Psoriasiform dermatitis after initiation of treatment with dupilumab for atopic dermatitis. Dermatitis 2019; 30: 234-236.
75. Grolleau C, Calugareanu A, Demouche S, Nosbaum A, Staumont-Sallé D, Aubert H, et al. IL-4/IL-13 inhibitors for atopic dermatitis induce psoriatic rash transcriptionally close to pustular psoriasis. J Invest Dermatol 2023; 143: 711-721.
76. Costa L, Caso F, Cantarini L, Del Puente A, Scarpa R, Atteno M. Efficacy of tocilizumab in a patient with refractory psoriatic arthritis. Clin Rheumatol 2014; 33: 1355-1357.
77. Akbari H, Talaee R, Zaker SF, Nikoueinejad H. Investigating the correlation between growth differentiation factor 15 serum level and its gene expression with psoriasis and its severity. Iran J Allergy Asthma Immunol 2021; 20: 593-599.
78. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun 2010; 393: 668-672.
79. Fu LX, Chen T, Guo ZP, Cao N, Zhang LW, Zhou PM. Enhanced serum interferon-lambda 1 interleukin-29 levels in patients with psoriasis vulgaris. An Bras Dermatol 2021; 96: 416-421.
80. Yilmaz B, Çakmak Genç G, Karakaş Çelik S, Solak Tekin N, Can M, Dursun A. Association between psoriasis disease and IFN-λ gene polymorphisms. Immunol Invest 2022; 51: 1772-1784.
81. Chen RY, Zhu Y, Shen YY, Xu QY, Tang HY, Cui NX, et al. The role of PD-1 signaling in health and immune-related diseases. Front Immunol 2023; 14: 1163633-1163646.
82. Hua S, Fan B, Mao W, Xu R, Wang Y, Kuai L, et al. Association between PDCD1 gene polymorphisms and psoriasis susceptibility in the Chinese population. Int J Dermatol 2021; 60: 1411-1417.
83. Ellis JA, Scurrah KJ, Li YR, Ponsonby AL, Chavez RA, Pezic A, et al. Epistasis amongst PTPN2 and genes of the vitamin D pathway contributes to risk of juvenile idiopathic arthritis. J Steroid Biochem Mol Biol 2015; 145: 113-120.
84. Sharp RC, Abdulrahim M, Naser ES, Naser SA. Genetic variations of PTPN2 and PTPN22: Role in the pathogenesis of type 1 diabetes and Crohn’s disease. Front Cell Infect Microbiol 2015; 5: 95-102.
85. Mei Q, Liu C, Zhang X, Li Q, Jia X, Wu J, et al. Associations between PTPN2 gene polymorphisms and psoriasis in Northeastern China. Gene 2019; 681: 73-79.
86. Liang Y, Pan HF, Ye DQ. Therapeutic potential of STAT4 in autoimmunity. Expert Opin Ther Targets 2014; 18: 945-960.
87. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012; 44: 1341-1348.
88. Zervou MI, Goulielmos GN, Castro-Giner F, Tosca AD, Krueger-Krasagakis S. STAT4 gene polymorphism is associated with psoriasis in the genetically homogeneous population of Crete, Greece. Hum Immunol 2009; 70: 738-741.
89. Zhou J, Li Y, Sun D. Associations between STAT gene polymorphisms and psoriasis in northeastern china. Dermatology 2017; 233: 30-36.
90. Msafiri Makene A, Liu JL. Association between CARD14 gene polymorphisms and psoriasis vulgaris in Hainan Han population based on exon sequencing: A case-control study. Medicine (Baltimore) 2022; 101: e30890-30898.
91. Oka A, Mabuchi T, Ikeda S, Terui T, Haida Y, Ozawa A, et al. IL12B and IL23R gene SNPs in Japanese psoriasis. Immunogenetics 2013; 65: 823-828.
92. Haase O, Mosaad H, Eldarouti MA, Elramly AZ, Samir N, Abdelhady MM, et al. TNFAIP3 and IL12B gene polymorphisms associated with psoriasis vulgaris in an Egyptian cohort. J Eur Acad Dermatol Venereol 2015; 29: 1297-1301.
93. Wu X, Zhao Z. Associations between ERAP1 gene polymorphisms and psoriasis susceptibility: A meta-analysis of case-control studies. Biomed Res Int. 2021; 2021: 5515868-5515877.
94. Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, et al. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121: 7-19.
95. Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet 2014; 46: 45-50.
96. Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the immune system with skin and bone tissue in psoriatic arthritis: A comprehensive review. Clin Rev Allergy Immunol 2016; 51: 87-99.
97. Dizen-Namdar N, Akcilar R, Bayat Z. Association between vaspin rs2236242 gene polymorphism and Psoriasis Vulgaris. Skin Pharmacol Physiol 2020; 33: 317-322.
98. Farag A, Shoaib M, Labeeb A, Sleem A, Hussien H, Elshaib M, Hanout H. S100A8 (rs3806232) gene polymorphism and S100A8 serum level in psoriasis vulgaris patients: A preliminary study. J Cosmet Dermatol 2022; 21: 4974-4982.
99. Abd Elneam AI, Alhetheli G, Al-Dhubaibi MS, Alrheam A, Hassan AE. The association between forkhead box class O3A gene polymorphism and psoriasis and its relationship with psoriasis severity. J Clin Aesthet Dermatol 2022; 15: 22-26.