1. Feigin VL, Vos T, Alahdab F, Amit AML, Bärnighausen TW, Beghi E, et al. Burden of Neurological Disorders Across the US From 1990-2017: A Global Burden of Disease Study. JAMA Neurol 2021; 78:165-176.
2. Talebi M, Khoramjouy M, Feizi A, Ali Z, Khan IA, Ayatollahi NA, et al. Novel multi-target therapeutic potential of the genus Inula: Advances and opportunities for neuroprotection. Pharmacol Res Mod Chin Med 2023; 7:100263.
3. Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, et al. Nutraceuticals-based therapeutic approach: Recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev Neurother 2021; 21:625-642.
4. Kim J, Wie M-B, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat Cell Biol 2019; 52:369-377.
5. Mustafa S, Akbar M, Khan MA, Sunita K, Parveen S, Pawar JS, et al. Plant metabolite diosmin as the therapeutic agent in human diseases. Curr Res Pharmacol Drug Discov 2022; 3:100122.
6. Staniewska A. Safety of treatment and dietary supplementation with diosmin in daily doses up to 2000 mg a day. New Med 2016 20: 63-70.
7. Li Y, Kandhare AD, Mukherjee AA, Bodhankar SL. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul Toxicol Pharmacol 2019; 105:77-85.
8.Nagasako-Akazome Y. Chapter 58 - Safety of High and Long-term Intake of Polyphenols. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in Human Health and Disease. San Diego: Academic Press; 2014. p. 747-756.
9. Damon M, Flandre O, Michel F, Perdrix L, Labrid C, Crastes de Paulet A. Effect of chronic treatment with a purified flavonoid fraction on inflammatory granuloma in the rat. Study of prostaglandin E2 and F2 alpha and thromboxane B2 release and histological changes. Arzneimittel-Forschung 1987; 37:1149-1153.
10. Rabe E, Agus G, Roztocil K. Analysis of the effects of micronized purified flavonoid fraction versus placebo on symptoms and quality of life in patients suffering from chronic venous disease: From a prospective randomized trial. Int Angiol 2015; 34:428-436.
11. Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412.
12. Man M-Q, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. Evid Based Complement Alternat Med 2019; 2019:2676307.
13. Xu S, Sun X, Wu J, Li K, Li X, Zhang Y, Gao X-j. TBBPA causes inflammation and cell death via the ROS/NF-κB pathway in the gastric mucosa. Ecotoxicol Environ Saf 2023; 262:115320.
14. Hong Y, An Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch Pharm Res 2018; 41:655-663.
15. Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 2019; 14:278-294.
16. Jaiswal P, Mandal M, Mishra A. Effect of hesperidin on fluoride‐induced neurobehavioral and biochemical changes in rats. J Biochem Mol Toxicol 2020; 34:e22575.
17. Shalkami AS, Hassan MIA, Bakr AG. Anti-inflammatory, anti-oxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Hum Exp Toxicol 2017; 37:78-86.
18. Wójciak M, Feldo M, Borowski G, Kubrak T, Płachno BJ, Sowa I. Anti-oxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules 2022; 27:8232-8241.
19. Sun S, Ji Y, Kersten S, Qi L. Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr 2012; 32:261-286.
20. Tejada S, Pinya S, Martorell M, Capó X, Tur JA, Pons A, Sureda A. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem 2018; 25:4929-4945.
21. Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses 2020; 144:109957.
22. Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari A-A. Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci 2018; 213:198-205.
23. Li C, Zug C, Qu H, Schluesener H, Zhang Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav Brain Res 2015; 281:32-42.
24. Lu P, Mamiya T, Lu L, Mouri A, Niwa M, Hiramatsu M, et al. Silibinin attenuates amyloid β25–35 peptide-induced memory impairments: Implication of inducible nitric-oxide synthase and tumor necrosis factor-α in mice. J Pharmacol Exp Ther 2009; 331:319-326.
25. Javed H, Vaibhav K, Ahmed ME, Khan A, Tabassum R, Islam F, et al. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J Neurol Sci 2015; 348:51-59.
26. Tahir M, Rehman MU, Lateef A, Khan R, Khan AQ, Qamar W, et al. Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-α and NF-κB activation. Alcohol 2013; 47:131-139.
27. Hwang S-L, Shih P-H, Yen G-C. Neuroprotective effects of citrus flavonoids. J Agric Food Chem 2012; 60:877-885.
28. Habib CN, Mohamed MR, Tadros MG, Tolba MF, Menze ET, Masoud SI. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur J Pharmacol 2022; 914:174573.
29. Lee D, Kim N, Jeon SH, Gee MS, Ju Y-J, Jung M-J, et al. Hesperidin improves memory function by enhancing neurogenesis in a mouse model of Alzheimer’s disease. Nutrients 2022; 14:3125-3135.
30. Lal M, Bainwad M, Juvekar AR. Neuroprotective effect of hesperidin in lipopolysaccharide induced memory impairment model of Alzheimer’s disease. World J Pharm Res 2019; 8:1494-1513.
31. Si Z-Z, Zou C-J, Mei X, Li X-F, Luo H, Shen Y, et al. Targeting neuroinflammation in Alzheimer’s disease: From mechanisms to clinical applications. Neural Regen Res 2023; 18:708-715.
32. Aranarochana A, Kaewngam S, Anosri T, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Hesperidin reduces memory impairment associated with adult rat hippocampal neurogenesis triggered by valproic acid. Nutrients 2021; 13:4364-4379.
33. Matias I, Diniz LP, Buosi A, Neves G, Stipursky J, Gomes FCA. Flavonoid hesperidin induces synapse formation and improves memory performance through the astrocytic TGF-β1. Front Aging Neurosci 2017; 9: 184-197.
34. Wang D, Liu L, Zhu X, Wu W, Wang Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol 2014; 34:1209-1221.
35. Huang M, Singh N, Kainth R, Khalid M, Kushwah AS, Kumar M. Mechanistic insight into diosmin-induced neuroprotection and memory improvement in intracerebroventricular-quinolinic acid rat model: Resurrection of mitochondrial functions and antioxidants. Evid Based Complement Alternat Med 2022; 2022: 1-14.
36. Shabani S, Mirshekar MA. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother 2018; 108:1376-1383.
37. Sawmiller D, Habib A, Li S, Darlington D, Hou H, Tian J, et al. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016; 299:98-106.
38. Rezai-Zadeh K, Shytle RD, Bai Y, Tian J, Hou H, Mori T, et al. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J Cell Mol Med 2009; 13:574-588.
39. Qian C, Yang C, Lu M, Bao J, Shen H, Deng B, et al. Activating AhR alleviates cognitive deficits of Alzheimer’s disease model mice by upregulating endogenous Aβ catabolic enzyme Neprilysin. Theranostics 2021; 11:8797-8812.
40. Antunes MS, Cattelan Souza L, Ladd FVL, Ladd AABL, Moreira AL, Bortolotto VC, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol Neurobiol 2020; 57:3027-3041.
41. Tamilselvam K, Nataraj J, Janakiraman U, Manivasagam T, Essa MM. Anti-oxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson′s disease in mice. Int J Nutr Pharmacol Neurol Dis 2013; 3:294-302.
42. Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci Lett 2021; 740:135426.
43. Antunes MS, Goes ATR, Boeira SP, Prigol M, Jesse CR. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 2014; 30:1415-1422.
44. Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Hesperidin plays beneficial roles in disorders associated with the central nervous system: A review. Int J Food Prop 2023; 26:1867-1884.
45.Nagappan PNP, Krishnamurthy VKV, Sereen KSK. Investigation on the neuroprotective effects of hesperidin on behavioural activities in 6-OHDA induced Parkinson model. Int J Pharma Bio Sci 2014; 5:B570-B577.
46. Elyasi L, Jahanshahi M, Jameie SB, Abadi HGH, Nikmahzar E, Khalili M, et al. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 2021; 32:11-17.
47. Balraj S, Aiyavu C, Manivasagam T, Kalaimathi J, Rajeshkumar S. Neuroprotective role of diosmin on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Biosci Biotechnol Res Commun 2020:1782-1787.
48. Menze ET, Tadros MG, Abdel-Tawab AM, Khalifa AE. Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. NeuroToxicology 2012; 33:1265-1275.
49. Khan H, Ullah H, Tundis R, Belwal T, Devkota HP, Daglia M, et al. Dietary flavonoids in the management of huntington’s disease: Mechanism and clinical perspective. EFood 2020; 1:38-52.
50. Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav Brain Res 2010; 206:38-46.
51. Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019; 24:648-665.
52. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73:17-48.
53. Cheng Q, Mao L, Huang H, Tang L, Jiang H, Zhang Y, Mu Q. Hesperetin ameliorates glioblastoma by inhibiting proliferation, inducing apoptosis, and suppressing metastasis. Transl Cancer Res 2022; 11:1781-1794.
54. EngİN C, Cakmakoglu B, İPlİK ES, ÇAtmakaŞ T. Hesperidin related apoptosis on brain glioblastoma. Ann Med Res 2019; 26:2255-2258.
55. Chang Y-L, Li Y-F, Chou C-H, Huang L-C, Wu Y-P, Kao Y, Tsai C-K. Diosmin inhibits glioblastoma growth through inhibition of autophagic flux. Int J Mol Sci 2021; 22:10453.
56. Soares JM, Faria BM, Ascari LM, Alves-Leon sv, Souza JM, Soares AG, et al. Diosmin induces caspase-dependent apoptosis in human glioblastoma cells. An Acad Bras Cienc 2019; 91: e20191031.
57. Kumar A, Loane D. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav Immun 2012; 26:1191-1201.
58. Mirshekar MA, Fanaei H, Keikhaei F, Javan FS. Diosmin improved cognitive deficit and amplified brain electrical activity in the rat model of traumatic brain injury. Biomed Pharmacother 2017; 93:1220-1229.
59. Zhang S, Qi Y, Xu Y, Han X, Peng J, Liu K, Sun C. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem Int 2013; 63:522-532.
60. Gaur V, Kumar A. Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol Rep 2010; 62:635-648.
61. Oztanir MN, Ciftci O, Cetin A, Aladag MA. Hesperidin attenuates oxidative and neuronal damage caused by global cerebral ischemia/reperfusion in a C57BL/J6 mouse model. Neurol Sci 2014; 35:1393-1399.
62. Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, et al. Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience 2014; 268:318-327.
63. Amantea D, Tassorelli C, Russo R, Petrelli F, Morrone LA, Bagetta G, Corasaniti MT. Neuroprotection by leptin in a rat model of permanent cerebral ischemia: Effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis 2011; 2:e238-e238.
64. Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008; 136:380-387.
65. Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004; 109:379-388.
66. Bertozzi MM, Rossaneis AC, Fattori V, Longhi-Balbinot DT, Freitas A, Cunha FQ, et al. Diosmin reduces chronic constriction injury-induced neuropathic pain in mice. Chem Biol Interact 2017; 273:180-189.
67. Carballo-Villalobos AI, González-Trujano ME, Alvarado-Vázquez N, López-Muñoz FJ. Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology 2017; 25:265-269.
68. Tao J, Liu L, Fan Y, Wang M, Li L, Zou L, et al. Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia. Int J Neurosci 2019; 129:784-793.
69. Carballo-Villalobos AI, González-Trujano M-E, Pellicer F, López-Muñoz FJ. Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. Biomed Res Int 2016; 2016:8263463.
70. Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol 2019; 17:1158-1175.
71. Atabaki R, Roohbakhsh A, Moghimi A, Mehri S. Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int Immunopharmacol 2020; 86:106720.
72. Szala‑Rycaj J, Zagaja M, Szewczyk A, Andres‑Mach M. Selected flavonoids and their role in the treatment of epilepsy–a review of the latest reports from experimental studies. Acta Neurobiol Exp 2021; 81:151-160.
73. Haghmorad D, Mahmoudi MB, Salehipour Z, Jalayer Z, Momtazi brojeni AA, Rastin M, et al. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J Neuroimmunol 2017; 302:23-33.
74. Ciftci O, Ozcan C, Kamisli O, Cetin A, Basak N, Aytac B. Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem Res 2015; 40:1111-1120.
75. Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The emerging role of flavonoids in autism spectrum disorder: A systematic review. J Clin Med 2023; 12:3520-3539.
76. Parker-Athill E, Luo D, Bailey A, Giunta B, Tian J, Shytle RD, et al. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol 2009; 217:20-27.
77. Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6:e844-e844.
78.Tan J, Luo D, Shytle RD. Luteolin and diosmin/diosmetin as novel STAT3 inhibitors for treating autism. Google Patents; 2014.
79. Souza LC, de Gomes MG, Goes ATR, Del Fabbro L, Filho CB, Boeira SP, Jesse CR. Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice. Prog Neuropsychopharmacol 2013; 40:103-109.
80. Xie L, Gu Z, Liu H, Jia B, Wang Y, Cao M, et al. The anti-depressive effects of hesperidin and the relative mechanisms based on the nlrp3 inflammatory signaling pathway. Front Pharmacol 2020; 11:1251-1261.
81. Fu H, Liu L, Tong Y, Li Y, Zhang X, Gao X, et al. The antidepressant effects of hesperidin on chronic unpredictable mild stress-induced mice. Eur J Pharmacol 2019; 853:236-246.
82. Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, et al. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023; 952:175670.
83. Donato F, de Gomes MG, Goes ATR, Borges Filho C, Del Fabbro L, Antunes MS, et al. Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: Possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull 2014; 104:19-26.
84. Lee B, Choi GM, Sur B. Antidepressant-Like Effects of hesperidin in animal model of post-traumatic stress disorder. Chin J Integr Med 2021; 27:39-46.
85. Zhao J, Zhang M, Zhang H, Wang Y, Chen B, Shao J. Diosmin ameliorates LPS-induced depression-like behaviors in mice: Inhibition of inflammation and oxidative stress in the prefrontal cortex. Brain Res Bull 2024; 206:110843.
86. Bouayed J. Polyphenols: A Potential New Strategy for the prevention and treatment of anxiety and depression. Curr Nutr Food Sci 2010; 6:13-18.
87. Zhu X, Liu H, Deng Z, Yan C, Liu Y, Yin X. Hesperidin exerts anxiolytic-like effects in rats with streptozotocin-induced diabetes via PKA/CREB signaling. Curr Mol Pharmacol 2023; 16:91-100.
88. Feizi F, Namazi N, Rahimi R, Ayati MH. Medicinal plants for management of insomnia: A systematic review of animal and human studies. Galen Med J 2019; 8:e1085.
89. Fernández S, Wasowski C, Paladini A, Marder M. Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur J Pharmacol 2005; 512:189-198.
90. Martínez MC, Fernandez SP, Loscalzo LM, Wasowski C, Paladini AC, Marder M, et al. Hesperidin, a flavonoid glycoside with sedative effect, decreases brain pERK1/2 levels in mice. Pharmacol Biochem Behav 2009; 92:291-296.
91. Guzmán-Gutiérrez SL, Navarrete A. Pharmacological exploration of the sedative mechanism of hesperidin identified as the active principle of Citrus sinensis flowers. Planta Med 2009; 75:295-301.
92. Loscalzo LM, Wasowski C, Paladini AC, Marder M. Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines. Eur J Pharmacol 2008; 580:306-313.
93. Naseem M, Parvez S. Hesperidin restores experimentally induced neurotoxicity in Wistar rats. Toxicol Mech Methods 2014; 24:512-519.
94. Kuzu M, Kandemir FM, Yıldırım S, Çağlayan C, Küçükler S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut Res 2021; 28:10818-10831.
95. Yıldız MO, Çelik H, Caglayan C, Kandemir FM, Gür C, Bayav İ, et al. Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology 2022; 90:197-204.
96. Khan MHA, Parvez S. Hesperidin ameliorates heavy metal induced toxicity mediated by oxidative stress in brain of Wistar rats. J Trace Elem Med Biol 2015; 31:53-60.
97. Jangra A, Kasbe P, Pandey S, Dwivedi S, Gurjar S, Kwatra M, et al. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: Modulation of anti-oxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 2015; 168:462-471.
98. Noshy PA, Azouz RA. Neuroprotective effect of hesperidin against emamectin benzoate-induced neurobehavioral toxicity in rats. Neurotoxicol Teratol 2021; 86:106981.
99. Peruru R, Dodoala S. Therapeutic potential of diosmin, a citrus flavonoid against arsenic-induced neurotoxicity via suppression of NOX 4 and its subunits. Indian J Pharmacol 2021; 53:132-142.
100. Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MM, et al. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res 2019; 26:35151-35162.