1. Hu J, Tong C, Zhou J, Gao C, Olatunji OJ. Protective effects of Shorea roxburghii phenolic extract on nephrotoxicity induced by cyclophosphamide: Impact on oxidative stress, biochemical and histopathological alterations. Chem Biodivers 2022; 19: e202200053.
2. Barnett S, Errington J, Sludden J, Jamieson D, Poinsignon V, Paci A, et al. pharmacokinetics and pharmacogenetics of cyclophosphamide in a neonate and infant childhood cancer patient population. Pharmaceuticals 2021; 14:272-283.
3. Idle J, Beyoğlu D. Ifosfamide-History, efficacy, toxicity and encephalopathy. Pharmacol Ther 2023; 243: 108366.
4. Mills BA, Roberts RW. Cyclophosphamide-induced cardiomyopathy. A report of two cases and review of the english literature. Cancer 1979; 43: 2223-2226.
5. Mahipal P, Pawar RS. Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pac J Trop Med 2017; 10: 808-812.
6. Ayza MA, Zewdie KA, Yigzaw EF, Ayele SG, Tesfaye BA, Tafere GG, et al. Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity. Int J Nephrol 2022; 2022: 1-12.
7. Lin X, Yang F, Huang J, Jiang S, Tang Y, Li J. Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway. Life Sci 2020; 256: 117901.
8. Iqubal A, Sharma S, Ansari MA, Najmi AK, Syed MA, Ali J, et al. Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur J Pharmacol 2019; 863: 172666.
9. https://pubchem.ncbi.nlm.nih.gov/compound/Levoverbenone
10.https://atcddd.fhi.no/atc_ddd_index/?code=R05CA11&
showdescription=yes
11. Bernardes WA, Lucarini R, Tozatti MG, Flauzino LGB, Souza MGM, Andradee Silva ML, et al. Antibacterial activity of the essential oil from rosmarinus officinalis and its major components against oral pathogens. Z Naturforsch C J Biosci 2010; 65: 588-593.
12. Kaneko S, Chen J, Wu J, Suzuki Y, Ma L, Kumazawa K. Potent odorants of characteristic floral/sweet odor in chinese chrysanthemum flower tea Infusion. J Agric Food Chem 2017; 65: 10058-10063.
13. Lima DKS, Ballico LJ, Rocha Lapa F, Gonçalves HP, de Souza LM, Iacomini M, et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents. J Ethnopharmacol 2012; 142: 274-282.
14. Miyazawa M, Sugie A, Shimada T. Roles of human cyp2a6 and 2b6 and rat cyp2c11 and 2b1 in the 10-hydroxylation of (–)-verbenone by liver microsomes. Drug Metab Dispos 2003; 31: 1049-1053.
15. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, et al. Pheromone production in bark beetles. Insect Biochem Mol Biol 2010; 40: 699-712.
16. Song B, Liu X, Yang S, Hu D, Jin L, Zhang H. Synthesis and anticancer activity of 2,3,4‐trimethoxyacetophenoxime ester containing benzothiazole moiety. Chin J Chem 2005; 23: 1236-1240.
17. Chen HP, Zhao ZZ, Li ZH, Dong ZJ, Wei K, Bai X, et al. Novel Natural Oximes and Oxime Esters with a Vibralactone Backbone from the Basidiomycete Boreostereum vibrans. ChemistryOpen 2016; 5: 142-149.
18. Ouyang G, Chen Z, Cai X, Song X, Bhadury P, Yang S, et al. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg Med Chem 2008; 16: 9699-9707.
19. Sammaiah A, Kaki SS, Manoj GNVTS, Poornachandra Y, Kumar CG, Prasad RBN. Novel fatty acid esters of apocynin oxime exhibit antimicrobial and antioxidant activities. Eur J Lipid Sci Technol 2015; 117: 692-700.
20. Harini ST, Kumar HV, Rangaswamy J, Naik N. Synthesis, antioxidant and antimicrobial activity of novel vanillin derived piperidin-4-one oxime esters: Preponderant role of the phenyl ester substituents on the piperidin-4-one oxime core. Bioorg Med Chem Lett 2012; 22: 7588-7592.
21. Shi Y, Wang S, He H, Li Y, Li Y, Fang Y, et al. Synthesis and bioactivity of novel pyrazole oxime ester derivatives containing furan moiety. Chin J Organic Chem 2015; 35: 1785.
22. Yu X, Shi D, Zhi X, Li Q, Yao X, Xu H. Synthesis and quantitative structure–activity relationship (QSAR) study of C7-oxime ester derivatives of obacunone as insecticidal agents. RSC Adv 2015; 5: 31700-31707.
23. Wang D, Ren S, Wang H, Yan H, Feng J, Zhang X. Semisynthesis and antifungal activity of novel oxime ester derivatives of carabrone modified at C(4) against Botrytis cinerea. Chem Biodivers 2014; 11: 886-903.
24. de Melo CGF, Salgado PRR, da Fonsêca DV, Braga RM, Filho MRDC, de Farias IEV, et al. Anticonvulsive activity of (1S)-(−)-verbenone involving RNA expression of BDNF, COX-2, and c-fos. Naunyn Schmiedebergs Arch Pharmacol 2017; 390: 863-869.
25. Zhao H, Zhou M, Duan L, Wang W, Zhang J, Wang D, et al. Efficient synthesis and antifungal activity of oleanolic acid oxime esters. Molecules 2013; 18: 3615-3629.
26. Liu XH, Pan L, Tan CX, Weng JQ, Wang BL, Li ZM. Synthesis, crystal structure, bioactivity and DFT calculation of new oxime ester derivatives containing cyclopropane moiety. Pestic Biochem Physiol 2011; 101: 143-147.
27. González-Velasco HE, Pérez-Gutiérrez MS, Alonso-Castro ÁJ, Zapata-Morales JR, Niño-Moreno P del C, Campos-Xolalpa N, et al. Anti-inflammatory and antinociceptive activities of the essential oil of Tagetes parryi A. Gray (asteraceae) and verbenone. Molecules 2022; 27: 2612-2623.
28. Iqubal A, Najmi AK, Md S, Alkreathy HM, Ali J, Syed MA, et al. Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules. Drug Deliv 2023; 30: 2241661-2241681.
29. Rezaei Sh, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Mirzaei M, Talebpour Amiri F. Sinapic acid attenuates cyclophosphamide-induced liver toxicity in mice by modulating oxidative stress, NF-κB, and caspase-3. Iran J Basic Med Sci 2023; 26: 526-531.
30. Ghareeb MA, Sobeh M, El-Maadawy WH, Mohammed HSh, Khalil H, Botros S, et al. Chemical profiling of polyphenolics in eucalyptus globulus and evaluation of its hepato–renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 2019; 8: 415-434.
31. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351-358.
32. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469-474.
33.Claiborne AL. Catalase activity. CRC Handbook of Methods for Oxygen Radical Research. 1986:283-284.
34. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968; 25: 192-205.
35. Ansari MA, Iqubal A, Ekbbal R, Haque SE. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother 2019; 109: 1372-1380.
36. Jiang X, Ren Z, Zhao B, Zhou S, Ying X, Tang Y. Ameliorating effect of pentadecapeptide derived from cyclina sinensis on cyclophosphamide-induced nephrotoxicity. Mar Drugs 2020; 18: 462-473.
37. Albino AH, Zambom FFF, Foresto-Neto O, Oliveira KC, Ávila VF, Arias SCA, et al. Renal inflammation and innate immune activation underlie the transition from gentamicin-induced acute kidney injury to renal fibrosis. Front Physiol 2021; 12: 1-11.
38. El‐Shabrawy M, Mishriki A, Attia H, Emad Aboulhoda B, Emam M, Wanas H. Protective effect of tolvaptan against cyclophosphamide‐induced nephrotoxicity in rat models. Pharmacol Res Perspect 2020; 8: 659-670.
39. Yung S, Zhang Q, Chau MKM, Chan TM. Distinct effects of mycophenolate mofetil and cyclophosphamide on renal fibrosis in NZBWF1/J mice. Autoimmunity 2015; 48: 471-487.
40. Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 393: 325-337.
41. Salama RM, Nasr MM, Abdelhakeem JI, Roshdy OK, ElGamal MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 2022; 45: 1254-1263.
42. Ayhanci A, Günes S, Sahinturk V, Appak S, Uyar R, Cengiz M, et al. Seleno l-methionine acts on cyclophosphamide-induced kidney toxicity. Biol Trace Elem Res 2010; 136: 171-179.
43. Alshahrani S, Ali Thubab HM, Ali Zaeri AM, Anwer T, Ahmed RA, Jali AM, et al. The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats. Int J Mol Sci 2022; 23: 11615-11625.
44. Abraham P, Isaac B. The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum Exp Toxicol 2011; 30: 616-623.
45. Khan A, Iqubal A, Wasim M, Syed MA, Haque SE. D‐pinitol attenuates isoproterenol‐induced myocardial infarction by alleviating cardiac inflammation, oxidative stress and ultrastructural changes in Swiss albino mice. Clin Exp Pharmacol Physiol 2022; 49: 1232-1245.
46. Zhao Z, Yang S, Deng Y, Wang L, Zhang Y, Feng Z, et al. Naringin interferes doxorubicin-induced myocardial injury by promoting the expression of ECHS1. Front Pharmacol 2022; 13: 859755-859765.
47. Khan A, Iqubal A, Haque SE. Combinatorial delivery of cinnamaldehyde and quercetin ameliorates isoproterenol-induced cardiac inflammation, apoptosis and myocardial infarction via modulation of NF-kB P65 and cleaved caspase-3 signaling molecules in wistar rats. Pharm Chem J 2022; 56: 197-205.
48. Zhang Y, Chang J, Gao H, Qu X, Zhai J, Tao L, et al. Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-κB pathway and NLRP3 inflammasome activation. Pharm Biol 2021; 59: 1423-1429.
49. Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000; 2: 811-820.
50. Jung Y, Kim H, Min SH, Rhee SG, Jeong W. Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα. J Biol Chem 2008; 283: 23863-23871.
51. Usmani J, Wasim M, Ansari MN, Hassan MJ, Sharma M, Ahmad R. Potential therapeutic effect of Carica papaya leaves extract on immune response, biochemical and hematological mechanisms on cecal ligation and puncture model of sepsis in rats: An in vivo study. 3 Biotech 2023; 13: 151-168.
52. Giordano C, Karasik O, King-Morris K, Asmar A. Uric acid as a marker of kidney disease: Review of the current literature. Dis Markers 2015; 2015: 1-6.
53. Al-Naimi M, Rasheed H, Hussien N, Al-Kuraishy H, Al-Gareeb A. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res 2019; 10: 95-99.
54. Salazar JH. Overview of urea and creatinine. Lab Med 2014; 45: e19-20.
55. Sharma S, Sharma P, Kulurkar P, Singh D, Kumar D, Patial V. Iridoid glycosides fraction from Picrorhiza kurroa attenuates cyclophosphamide-induced renal toxicity and peripheral neuropathy via PPAR-γ mediated inhibition of inflammation and apoptosis. Phytomedicine 2017; 36: 108-117.
56. Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31: 625-635.
57. Al-Gayyar MMH, Hassan HM, Alyoussef A, Abbas A, Darweish MM, El-Hawwary AA. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis. Redox Rep 2016; 21: 50-60.
58. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol 2017; 8: 829-841.
59. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 2013; 182: 118-131.