Mitotherapy attenuates sepsis-induced brain injury in rats subjected to cecal ligation and puncture: Role of SIRT-1/PGC-1α network

Document Type : Original Article

Authors

1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

3 Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Anesthesiology, Faculty of Medicine, Tabriz Azad Medical University, Tabriz, Iran

5 Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

10.22038/ijbms.2025.84848.18363

Abstract

Objective(s): Sepsis-induced brain injury poses a critical challenge with limited therapeutic options. Mitochondrial dysfunction is a central contributor to this pathogenesis. The current work aimed to examine the effects of mitochondrial transplantation, termed “mitotherapy”, on sepsis-induced brain injury using a cecal ligation and puncture (CLP) rat model.
Materials and Methods: Male Wistar rats (n=40, 12 weeks old, weighing 250–300 g) were allocated into groups with or without CLP-induced sepsis, receiving mitotherapy via single or two repetitive injections post-CLP. In recipient groups, mitochondria harvested from donor rats were injected intravenously (400 μl of mitochondrial suspension containing 7.5×106 mitochondria/ml of respiration buffer). Twenty-four hours post-operation, the behavioral phenotype was tested by using the Murine Sepsis Score (MSS). Brain morphological examination was conducted using Hematoxylin and Eosin staining. Mitochondrial function was measured by evaluating membrane potential, reactive oxygen species production, and adenosine triphosphate content. The expression of genes regulating mitochondrial biogenesis (SIRT-1, PGC-1α) and fission/fusion (Drp1, Mfn1, Mfn2) was determined via real-time polymerase chain reaction. The levels of inflammatory cytokines (TNF-α, IL-1β, IL-6) were measured using Enzyme-Linked Immunosorbent Assay. 
Results: Mitotherapy reduced MSS and alleviated histopathological changes associated with sepsis-induced brain injury. Furthermore, it restored mitochondrial functional indices, up-regulated genes involved in mitochondrial biogenesis and fusion, and reduced inflammatory cytokine levels (P<0.05). Repetitive injections provided greater therapeutic benefits than a single injection.
Conclusion: Mitotherapy mitigated sepsis-induced brain injury by improving mitochondrial function, biogenesis, and dynamics within the SIRT-1/PGC-1α network and concurrently suppressing inflammation. Repetitive injections exhibited enhanced potency, suggesting a novel avenue for managing sepsis-associated brain dysfunction. 

Keywords

Main Subjects


1.    Arora J, Mendelson AA, Fox-Robichaud A. Sepsis: Network pathophysiology and implications for early diagnosis. Am J Physiol Regul Integr Comp Physiol 2023; 324: R613-R624.
2.    Sonneville R, Benghanem S, Jeantin L, de Montmollin E, Doman M, Gaudemer A, et al. The spectrum of sepsis-associated encephalopathy: A clinical perspective. Crit Care 2023; 27: 386-397.
3.    Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-associated encephalopathy: From pathophysiology to progress in experimental studies. Mol Neurobiol 2021; 58: 2770-2779.
4. Zhao L, Gao Y, Guo S, Lu X, Yu S, Ge ZZ, et al. Sepsis-Associated encephalopathy: Insight into injury and pathogenesis. CNS Neurol Disord Drug Targets 2021; 20: 112-124.
5. Xin Y, Tian M, Deng S, Li J, Yang M, Gao J, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: Microglia and neuroinflammation. Mol Neurobiol 2023; 60: 1369-1390.
6. Manfredini A, Constantino L, Pinto MC, Michels M, Burger H, Kist LW, et al. Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model. Clin Sci 2019; 133: 1993-2004.
7. Wu Y, Yao Y-M, Lu Z-Q. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med 2019; 97: 451-462.
8. Pan S, Lv Z, Wang R, Shu H, Yuan S, Yu Y, et al. Sepsis-induced brain dysfunction: pathogenesis, diagnosis, and treatment. Oxid Med Cell Longev 2022; 1328729.
9. van der Slikke EC, Star BS, Quinten VM, Ter Maaten JC, Ligtenberg JJ, van Meurs M, et al. Association between oxidized nucleobases and mitochondrial DNA damage with long-term mortality in patients with sepsis. Free Radic Biol Med 2022; 179: 156-163.
10. Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, et al. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870: 166946.
11. Zhang H, Feng Y-w, Yao Y-m. Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil Med Res 2018; 5: 1-11.
12. Arina P, Singer M. Pathophysiology of sepsis. Curr Opin Anesthesiol 2021; 34: 77-84.
13. Huang Y, Chen R, Jiang L, Li S, Xue Y. Basic research and clinical progress of sepsis-associated encephalopathy. J Intensive Care Med 2021; 1: 90-95.
14. Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An overview on mitochondrial-based therapies in sepsis-related myocardial dysfunction: Mitochondrial transplantation as a promising approach. Can J Infect Dis Med Microbiol 2022; 3277274.
15. Park A, Oh M, Lee SJ, Oh K-J, Lee E-W, Lee SC, et al. Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int J Mol Sci 2021; 22: 4793-4805.
16.    Yan C, Ma Z, Ma H, Li Q, Zhai Q, Jiang T, et al. Mitochondrial transplantation attenuates brain dysfunction in sepsis by driving microglial M2 polarization. Mol Neurobiol 2020; 57: 3875-3890.
17.    Hwang JW, Lee MJ, Chung TN, Lee HAR, Lee JH, Choi SY, et al. The immune modulatory effects of mitochondrial transplantation on cecal slurry model in rat. Crit Care 2021; 25: 1-12.
18.    Zhang Z, Yan C, Miao J, Pu K, Ma H, Wang Q. Muscle-derived mitochondrial transplantation reduces inflammation, enhances bacterial clearance, and improves survival in sepsis. Shock 2021; 56: 108-118.
19.    Mokhtari B, Hamidi M, Badalzadeh R, Mahmoodpoor A. Mitochondrial transplantation protects against sepsis-induced myocardial dysfunction by modulating mitochondrial biogenesis and fission/fusion and inflammatory response. Mol Biol Rep 2023; 50: 2147-2158.
20. Bafadam S, Mokhtari B, Vafaee MS, Oscuyi ZZ, Nemati S, Badalzadeh R. Mitochondrial transplantation combined with coenzyme Q10 induces cardioprotection and mitochondrial improvement in aged male rats with reperfusion injury. Exp Physiol 2024; doi: 10.1113/EP091358
21. Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp 2014: e51682.
22. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 2009; 4: 31-36.
23.    Tuon L, Comim CM, Petronilho F, Barichello T, Izquierdo I, Quevedo J, et al. Time-dependent behavioral recovery after sepsis in rats. Intensive Care Med 2008; 34: 1724-1731.
24.    Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SM, McCormick JK, et al. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes 2014; 7: 1-11.
25.    Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 2014; 2014: 655-658.
26.    Zhu Y, Wang K, Ma Z, Liu D, Yang Y, Sun M, et al. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress. Toxicol Appl Pharmacol 2019; 363: 34-46.
27.    Xie K, Wang Y, Yin L, Wang Y, Chen H, Mao X, et al. Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice. Shock 2021; 55: 100-109.
28.    Li S, Hu Q, Huang J, Wu X, Ren J. Mitochondria-derived damage-associated molecular patterns in sepsis: From bench to bedside. Oxid Med Cell Longev 2019; 6914849.
29.    Zhou M, Aziz M, Wang P. Damage-associated molecular patterns as double-edged swords in sepsis. Antioxid Redox Signal 2021; 35: 1308-1323.
30.    Haileselassie B, Joshi AU, Minhas PS, Mukherjee R, Andreasson KI, Mochly-Rosen D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. J Neuroinflammation 2020; 17: 1-11.
31.    Deng S, Ai Y, Gong H, Feng Q, Li X, Chen C, et al. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochem Biophys Res Commun 2018; 496: 865-871.
32.    Zhu Y, Kuang L, Wu Y, Deng H, She H, Zhou Y, et al. Protective effects of inhibition of mitochondrial fission on organ function after sepsis. Front Pharmacol 2021; 12: 712489.
33.    Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev 2016; 68: 20-48.
34.    Nagar H, Piao S, Kim C-S. Role of mitochondrial oxidative stress in sepsis. Acute Crit Care 2018; 33: 65-72.
35.    Kong C, Song W, Fu T. Systemic inflammatory response syndrome is triggered by mitochondrial damage. Mol Med Rep 2022; 25: 1-8.
36.    Sun L, Zhao Z, Guo J, Qin Y, Yu Q, Shi X, et al. Mitochondrial transplantation confers protection against the effects of ischemic stroke by repressing microglial pyroptosis and promoting neurogenesis. Neural Regen Res 2024; 19: 1325-1335.
37.    Zhang Z, Ma Z, Yan C, Pu K, Wu M, Bai J, et al. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res 2019; 356: 322-331.
38.    Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, Rostami MK, Toosi SMR, Jahanian-Najafabadi A, et al. Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 2020; 165: 70-80.
39.    Chen T, Majerníková Na, Marmolejo-Garza A, Trombetta-Lima M, Sabogal-Guáqueta AM, Zhang Y, et al. Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radic Biol Med 2023; 208: 62-72.
40.    Zhao J, Qu D, Xi Z, Huan Y, Zhang K, Yu C, et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. Transl Res 2021; 235: 102-114.
41.    Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: Underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 2022; 19: 1-14.
42.    Norat P, Sokolowski JD, Gorick CM, Soldozy S, Kumar JS, Chae Y, et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc Interv Neurol 2023; 3: e000644.
43.    Nakamura Y, Lo EH, Hayakawa K. Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke 2020; 51: 3142-3146.
44.    Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J Alzheimer’s Dis 2019; 72: 587-604.
45.    Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion 2017; 34: 91-100.
46.    Bertero E, Maack C, O’Rourke B. Mitochondrial transplantation in humans:“magical” cure or cause for concern? J Clin Investig 2018; 128: 5191-5194.
47.    Chang J-C, Wu S-L, Liu K-H, Chen Y-H, Chuang C-S, Cheng F-C, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: Restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res 2016; 170: 40-56.e3.