1. Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 2019; 126: 620–632.
2. Bhattacharjee P, Ahearne M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics 2021; 13: 319.
3. Ting DSJ, Deshmukh R, Ting DSW, Ang M. Big data in corneal diseases and cataract: current applications and future directions. FData 2023; 6: 1017420.
4. Lu Q, Al-Sheikh O, Elisseeff JH, Grant MP. Biomaterials and tissue engineering strategies for conjunctival reconstruction and dry eye treatment. Middle East Afr J Ophthalmol 2015; 22: 428–434.
5. Karamichos D. Ocular tissue engineering: current and future directions. MDPI 2015; p. 77–80.
6. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 2016; 134: 167–173.
7. Chi M, Yuan B, Xie Z, Hong J. The innovative biomaterials and technologies for developing corneal endothelium tissue engineering scaffolds: a review and prospect. Bioengineering 2023; 10: 1284.
8. Riaz M, Zaman M, Hameed H, Sarwar HS, Khan MA, Irfan A, et al. Lamotrigine-loaded poloxamer-based thermo-responsive sol–gel: formulation, in vitro assessment, ex vivo permeation, and toxicology study. Gels 2023; 9: 817.
9. Özlem K, Ayhan ET, Ilbasmis-Tamer S, Tirnaksiz FF. Timolol maleate in situ ophthalmic mucoadhesive-thermosensitive gel: development and characterization. Turk J Pharm Sci 2024; 21: 348–354.
10. Yang Y, Lockwood A. Topical ocular drug delivery systems: innovations for an unmet need. Exp Eye Res 2022; 218: 109006.
11. Koelwel C, Rothschenk S, Fuchs-Koelwel B, Gabler B, Lohmann C, Gopferich A. Alginate inserts loaded with epidermal growth factor for the treatment of keratoconjunctivitis sicca. Pharm Dev Technol 2008; 13: 221–231.
12. Bastante CC, Silva NH, Cardoso LC, Serrano CM, De La Ossa EJM, Freire CS, et al. Biobased films of nanocellulose and mango leaf extract for active food packaging: supercritical impregnation versus solvent casting. Food Hydrocoll 2021; 117: 106709.
13. Ji P, Zhang C, Kong Y, Liu H, Guo J, Shi L, et al. Collagen film with bionic layered structure and high light transmittance for personalized corneal repair fabricated by controlled solvent evaporation technique. J Funct Biomater 2022; 13: 52.
14. Beena M, Ameer JM, Kasoju N. Optically clear silk fibroin films with tunable properties for potential corneal tissue engineering applications: a process–property–function relationship study. ACS Omega 2022; 7: 29634–29646.
15. Gong D, Wu N, Chen H, Zhang W, Yan C, Zhang C, et al. Phytic acid-loaded polyvinyl alcohol hydrogel promotes wound healing of injured corneal epithelium through inhibiting ferroptosis. Redox Biol 2024; 76: 103354.
16. Vollmert B. Polymer chemistry. 1st ed. Springer Science & Business Media; 2012.
17. Ceylan S, Demir D. Polyvinyl alcohol: starch based membrane scaffolds for tissue transparency requirements: fabrication, characterization and cytotoxicity studies. Next Mater 2024; 3: 100148.
18. Han Y, Li C, Cai Q, Bao X, Tang L, Ao H, et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed Mater 2020; 15: 035022.
19. Bates NM, Puy C, Jurney PL, McCarty OJT, Hinds MT. Evaluation of the effect of crosslinking method of poly(vinyl alcohol) hydrogels on thrombogenicity. Cardiovasc Eng Technol 2020; 11: 448–455.
20. Salehi AOM, Nourbakhsh MS, Rafienia M, Baradaran-Rafii A, Keshel SH. Corneal stromal regeneration by hybrid oriented poly(ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol 2020; 161: 377–388.
21. Küng F, Schubert DW, Stafiej P, Kruse FE, Fuchsluger TA. A novel suture retention test for scaffold strength characterization in ophthalmology. Mater Sci Eng C Mater 2016; 69: 941–946.
22. Arica TA, Guzelgulgen M, Yildiz AA, Demir MM. Electrospun GelMA fibers and p(HEMA) matrix composite for corneal tissue engineering. Mater Sci Eng C Mater Biol Appl 2021; 120: 111720.
23. Yan Y, Cao Y, Cheng R, Shen Z, Zhao Y, Zhang Y, et al. Preparation and in vitro characterization of gelatin methacrylate for corneal tissue engineering. Tissue Eng Regen Med 2022; 19: 59–72.
24. Cheng H, Li C, Jiang Y, Wang B, Wang F, Mao Z, et al. Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. J Mater Chem B 2018; 6: 634–640.
25. Hubbell JA. Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release 1996; 39: 305–313.
26. Sahi AK, Varshney N, Poddar S, Mahto SK. Comparative behaviour of electrospun nanofibers fabricated from acid and alkaline hydrolysed gelatin: towards corneal tissue engineering. J Polym Res 2020; 27: 1–15.
27. Koudouna E, Huertas-Bello M, Rodriguez CN, Consuelo Henao S, Navarrete ML, Avila MY. Genipin in an ex vivo corneal model of bacterial and fungal keratitis. Transl Vis Sci Technol 2021; 10: 31.
28. Zhou C, Yi Z. Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomater 1999; 20: 2093–2099.
29. Ilina O, Friedl P. Mechanisms of collective cell migration at a glance. J Cell Sci 2009; 122: 3203–3208.
30. Straccia MC, d’Ayala GG, Romano I, Oliva A, Laurienzo P. Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 2015; 13: 2890–2908.
31. Stafiej P, Küng F, Kruse F, Schubert D, Fuchsluger T. Mechanical and optical properties of PCL nanofiber reinforced alginate hydrogels for application in corneal wound healing. Biomater Med Appl 2018; 2: 2.
32. McDougall S, Dallon J, Sherratt J, Maini P. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans A Math Phys Eng Sci 2006; 364: 1385–1405.
33. Nowak A, Zagórska-Dziok M, Perużyńska M, Cybulska K, Kucharska E, Ossowicz-Rupniewska P, et al. Assessment of the anti-inflammatory, antibacterial and anti-aging properties and possible use on the skin of hydrogels containing Epilobium angustifolium L. extracts. Front Pharmacol 2022; 13: 896706.
34. Fan F, Saha S, Hanjaya-Putra D. Biomimetic hydrogels to promote wound healing. Front Bioeng Biotechnol 2021; 9: 718377.
35. Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med 2005; 55: 175–182.
36. Formisano N, van der Putten C, Grant R, Sahin G, Truckenmuller RK, Bouten CVC, et al. Mechanical properties of bioengineered corneal stroma. Adv Healthc Mater 2021; 10: e2100972.
37. Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: an evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2021; 236: 3275–3303.
38. Latthe SS, Terashima C, Nakata K, Fujishima A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 2014; 19: 4256–4283.
39. Tian JJY, Liu L, Ross M, Sheardown H. Hyaluronic acid based therapeutic bandage contact lenses for corneal wound healing. Invest Ophthalmol Vis Sci 2022; 63: 3222–A0257.
40. Delaey J, De Vos L, Koppen C, Dubruel P, Van Vlierberghe S, Van den Bogerd B. Tissue engineered scaffolds for corneal endothelial regeneration: a material’s perspective. Biomater Sci 2022; 10: 2440–2461.
41. Kolarijani NR, Mirzaii M, Zamani S, Maghsoodifar H, Naeiji M, Douki S, et al. Assessment of the ability of Pseudomonas aeruginosa and Staphylococcus aureus to create biofilms during wound healing in a rat model treated with carboxymethyl cellulose/carboxymethyl chitosan hydrogel containing EDTA. Int Wound J 2024; 21: e14878.
42. Fan L, Yang H, Yang J, Peng M, Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 2016; 146: 427–434.
43. Agostinacchio F, Mu X, Dire S, Motta A, Kaplan DL. In situ 3D printing: opportunities with silk inks. Trends Biotechnol 2021; 39: 719–730.
44. Montanheiro TLA, Schatkoski VM, de Menezes BRC, Pereira RM, Ribas RG. Recent progress on polymer scaffolds production: methods, main results, advantages and disadvantages. Express Polym Lett 2022; 16: 197–219.
45. Pye DC. A clinical method for estimating the modulus of elasticity of the human cornea in vivo. PLoS One 2020; 15: e0224824.
46. Matalia HP, Nandini C, Matalia J. Surgical technique for the management of corneal perforation in brittle cornea. Indian J Ophthalmol 2021; 69: 2521–2523.
47. Krainer S, Hirn U. Contact angle measurement on porous substrates: effect of liquid absorption and drop size. Colloids Surf A Physicochem Eng Asp 2021; 619: 126503.
48. Wu KY, Qian SY, Faucher A, Tran SD. Advancements in hydrogels for corneal healing and tissue engineering. Gels 2024; 10: 662.
49. Jadach B, Świetlik W, Froelich A. Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. J Pharm Sci 2022; 111: 1250–1261.
50. Bayliss N, Schmidt BV. Hydrophilic polymers: current trends and visions for the future. Prog Polym Sci 2023; 147: 101753.
51. Gupta Y, Kishore A, Kumari P, Balakrishnan N, Lomi N, Gupta N, et al. Peripheral ulcerative keratitis. Surv Ophthalmol 2021; 66: 977–998.
52. Geng Y, Xue H, Zhang Z, Panayi AC, Knoedler S, Zhou W, et al. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305: 120555.
53. Sarika PR, James NR. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr Polym 2016; 148: 354–361.
54. Yang Y, Liang Y, Chen J, Duan X, Guo B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact Mater 2022; 8: 341–354.
55. Irfan NI, Zubir AZM, Suwandi A, Haris MS, Jaswir I, Lestari W. Gelatin-based hemostatic agents for medical and dental application at a glance: a narrative literature review. Saudi Dent J 2022; 34: 699–707.
56. Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: a review. Int J Biol Macromol 2024; 274: 133218.
57. Abdalkader RK, Fujita T. Corneal epithelium models for safety assessment in drug development: present and future directions. Exp Eye Res 2023; 237: 109697.
58. Sandaruwan B, Manatunga DC, Nilmini R, Dassanayake R, Wijesinghe R, Zhou Y, et al. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. Anal Methods 2024; 17: 408–431.
59. Ruan Y, Jiang S, Musayeva A, Pfeiffer N, Gericke A. Corneal epithelial stem cells – physiology, pathophysiology and therapeutic options. Cells 2021; 10: 2302.
60. Kang JI, Park KM. Advances in gelatin-based hydrogels for wound management. J Mater Chem B 2021; 9: 1503–1520.
61. Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, et al. Recent developments of carboxymethyl cellulose. Polymers (Basel) 2021; 13: 1345.
62. Wu M, Hill LJ, Downie LE, Chinnery HR. Neuroimmune crosstalk in the cornea: the role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91: 101105.
63. Erdinest N, Wajnsztajn D, London N, Solomon A. Ocular surface inflammation and ectatic corneal disorders. Curr Opin Allergy Clin Immunol 2023; 23: 430–437.
64. Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15: 1440309.
65. Peris-Martínez C, García-Domene MC, Penadés M, Luque MJ, Fernández-López E, Artigas JM. Spectral transmission of the human corneal layers. J Clin Med 2021; 10: 4490.
66. Kong B, Sun W, Chen G, Tang S, Li M, Shao Z, et al. Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci Rep 2017; 7: 970.
67. Li S, Chen N, Li X, Li Y, Xie Z, Ma Z, et al. Bioinspired double‐dynamic‐bond crosslinked bioadhesive enables post‐wound closure care. Adv Funct Mater 2020; 30: 2000130.
68. Hernandez JL, Woodrow KA. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthc Mater 2022; 11: e2102087.