1. Lee SH, CH Shin. Reduced male fertility in childhood cancer survivors. Ann Pediatr Endocrinol Metab 2013; 18: 168-173.
2. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of male survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. J Clin Oncol 2010; 28: 332-339.
3. Delgouffe E, Braye A, Goossens E. Testicular tissue banking for fertility preservation in young boys: Which patients should be included? Front Endocrinol 2022; 13: 854186-854201.
4. Stukenborg JB, Wyns C. Fertility sparing strategies for pre-and peripubertal male cancer patients. Ecancermedicalscience 2020; 14: 1016-1022.
5. Bhaskar R, Gupta MK, Han SS. Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. Eur Polym J 2022; 174: 111318.
6. Baert Y, Dvorakova-Hortova K, Margaryan H, Goossens E. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication 2019; 11: 035011.
7. Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, et al. Generation of haploid spermatids on silk fibroin‐alginate‐laminin‐based porous 3D scaffolds. Macromol Biosci 2023; 23: 2200574.
8. Cham TC, Chen X, Honaramooz A. Current progress, challenges, and future prospects of testis organoids. Biol Reprod 2021; 104: 942-961.
9. Zhang Z, Wang B, Hui D, Qiu J, Wang S. 3D bioprinting of soft materials-based regenerative vascular structures and tissues.Engineering 2017; 123: 279-291.
10. Guo C, Li L, Li S, Wang Y, Yu X. Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material for bone tissue engineering. RSC Adv 2017; 7: 42614-42626.
11. Nava MM, Draghi L, Giordano C, Pietrabissa R. The effect of scaffold pore size in cartilage tissue engineering. J Appl Biomater Funct Mater 2016; 14: e223-e229.
12. Maksoud FJ, de la Paz FV, Hann A, Thanarak J, Reilly G, Claeyssens F, et al. Porous biomaterials for tissue engineering: A review. J Mater Chem B 2022; 10: 8111-8165.
13. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev 2013; 19: 485-502.
14. Lutzweiler GA, Halili N, Engin Vrana N. The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics 2020; 12: 602-631.
15. Costantini M, Barbetta A. Gas foaming technologies for 3D scaffold engineering, in Functional 3D tissue engineering scaffolds. 2018; Elsevier. p. 127-149.
16. Santos-Rosales V, Iglesias-Mejuto A, García-González CA. Solvent-free approaches for the processing of scaffolds in regenerative medicine. Polymers 2020; 12: 533-553.
17. Montjovent MO, Mathieu L, Hinz B, Applegate LL, Bourban P-E, Zambelli PY, et al. Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 2005; 11: 1640-1649.
18. Thomas MJ. In vitro growth of osteoblasts on poly lactic-co-glycolic acid scaffolds created via gas foaming. 2018.
19. Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L, et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers 2020; 12: 780-794.
20. Barbetta A, Barigelli E, Dentini M. Porous alginate hydrogels: Synthetic methods for tailoring the porous texture. Biomacromolecules 2009; 10: 2328-2337.
21. Barbetta A, Gumiero A, Pecci R, Bedini R, Dentini M. Gas-in-liquid foam templating as a method for the production of highly porous scaffolds. Biomacromolecules 2009; 10: 3188-3192.
22. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv 2019; 9: 26252-26262.
23. Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater 2021; 31: 2010609-2010631.
24. Oliver E, Stukenborg J. Rebuilding the human testis in vitro. Andrology 8 825–834. 2020.
25. Bashiri Z, Gholipourmalekabadi M, Falak R, Amiri I, Asgari H, Chauhan NPS, et al. In vitro production of mouse morphological sperm in artificial testis bioengineered by 3D printing of extracellular matrix. Int J Biol Macromol 2022; 217: 824-841.
26. Movassagh SA, Movassagh SA, Dehkordi MB, Pourmand G, Gholami K, Talebi A, et al. Isolation, identification, and differentiation of human spermatogonial cells on three-dimensional decellularized sheep testis. Acta Histochem 2020; 122: 151623.
27. Naeemi S, Eidi A, Khanbabaee R, Sadri-Ardekani H, Kajbafzadeh AM. Differentiation and proliferation of spermatogonial stem cells using a three-dimensional decellularized testicular scaffold: A new method to study the testicular microenvironment in vitro. Int Urol Nephrol 2021; 53: 1543-1550.
28. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10: 15-31.
29. Willemse J, Verstegen MM, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJ, et al. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl 2020; 108: 110200.
30. Aeberhard PA, Grognuz A, Peneveyre C, McCallin S, Hirt‐Burri N, Antons J, et al. Efficient decellularization of equine tendon with preserved biomechanical properties and cytocompatibility for human tendon surgery indications. Artifi Organs 2020; 44: E161-E71.
31. Rosmark O, Åhrman E, Müller C, Elowsson Rendin L, Eriksson L, Malmström A, et al. Quantifying extracellular matrix turnover in human lung scaffold cultures. Sci Rep 2018; 8: 5409-5422.
32. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: A novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biology of Reproduction. 2017;96(3):720-32.
33. Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Microfluidic bioprinting for the in vitro generation of novel biomimetic human testicular tissues. bioRxiv 2021; 6: 1-28.
34. Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z, et al. A testis-derived hydrogel as an efficient feeder-free culture platform to promote mouse spermatogonial stem cell proliferation and differentiation. Front Cell Dev Biol 2020; 8: 250-264.
35. Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 2018; 67: 270-281.
36. Xu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, et al. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. Int J Biol Macromol 2021;187: 840-849.
37. Hou C, Zheng J, Li Z, Qi X, Tian Y, Zhang M, et al. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int J Biol Macromol 2021; 180: 177-186.
38. Koob TJ, Hernandez DJ. Mechanical and thermal properties of novel polymerized NDGA–gelatin hydrogels. Biomaterials 2003; 24: 1285-1292.
39. Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers 2017; 9: 401-425.
40. Nikkhah M, Akbari M, Paul A, Memic A, Dolatshahi‐Pirouz A, Khademhosseini A. Gelatin‐Based Biomaterials For Tissue Engineering and Stem Cell Bioengineering. Biomaterials from nature for advanced devices and therapies. 2016; 1: 37-62.
41. Davidenko N, Schuster CF, Bax DV, Farndale RW, Hamaia S, Best SM, et al. Evaluation of cell binding to collagen and gelatin: A study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med 2016; 27: 1-14.
42. Mauri E, Sacchetti A, Vicario N, Peruzzotti-Jametti L, Rossi F, Pluchino S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater Sci 2018; 6: 501-510.
43. Kim BS, Park IK, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T, et al. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 2011; 36: 238-268.
44. Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, et al. Artificial testis: A testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021; 9: 3465-3484.
45. Wang B, Johnson A, Li W. Development of an extracellular matrix‐enriched gelatin sponge for liver wound dressing. J Biomed Mater Res A 2020; 108: 2057-2068.
46. Poursamar SA, Hatami J, Lehner AN, da Silva CL, Ferreira FC, Antunes APM. Potential application of gelatin scaffolds prepared through in situ gas foaming in skin tissue engineering. Int J Polym Mater Polym Biomater 2016; 65: 315-322.
47. Asgari F, Asgari HR, Najafi M, Eftekhari BS, Vardiani M, Gholipourmalekabadi M, et al. Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing. J Mater Sci Mater Med 2021; 32: 47-64.
48. Craciunescu, O, Seciu AM, Zarnescu O. In vitro and in vivo evaluation of a biomimetic scaffold embedding silver nanoparticles for improved treatment of oral lesions. Mater Sci Eng C Mater Biol Appl 2021; 123: 112015.
49. Poursamar SA, Hatami J, Lehner AN, da Silva CL, Ferreira FC, Antunes APM. Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment. Mater Sci Eng C Mater Biol Appl 2015; 48: 63-70.
50. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 2014; 35: 970-982.
51. Schmitz TC, Dede Eren A, Spierings J, de Boer J, Ito K, Foolen J. Solid‐phase silica‐based extraction leads to underestimation of residual DNA in decellularized tissues. Xenotransplantation 2021; 28: e12643.
52. Moore MC, Pandolfi V, McFetridge PS. Novel human-derived extracellular matrix induces in vitro and in vivo vascularization and inhibits fibrosis. Biomaterials 2015; 49: 37-46.
53. Farag A, Hashimi SM, Vaquette C, Volpato FZ, Hutmacher DW, Ivanovski S. Assessment of static and perfusion methods for decellularization of PCL membrane-supported periodontal ligament cell sheet constructs. Arch Oral Biol 2018; 88: 67-76.
54. Li M, Zhang T, Jiang J, Mao Y, Zhang A, Zhao J. ECM coating modification generated by optimized decellularization process improves functional behavior of BMSCs. Mater Sci Eng C Mater Biol Appl 2019; 105: 110039.
55. Rijal G, Wang J, Yu I, Gang DR, Chen RK, Li W. Porcine breast extracellular matrix hydrogel for spatial tissue culture. Int J Mol Sci 2018; 19: 2912-2925.
56. Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8: 1-17.
57. Khazaei MR, Ami Z, Khazaei M, Rezakhani L. The decellularized calf testis: Introducing suitable scaffolds for spermatogenesis studies. Int J Fertil Steril 2024; 18: 32-39.
58. Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13: 20417314221101151.
59. Liu X, Li N, Gong D, Xia C, Xu Z. Comparison of detergent‐based decellularization protocols for the removal of antigenic cellular components in porcine aortic valve. Xenotransplantation 2018; 25: e12380.
60. Yang G, Xiao Z, Long H, Ma K, Zhang J, Ren X, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 2018; 8: 1616-1629.
61. Franko R, Franko Y, Ribes Martinez E, Ferronato GA, Heinzelmann I, Grechi N, et al. Mechanical properties of native and decellularized reproductive tissues: Insights for tissue engineering strategies. Sci Rep 2024; 14: 73477361.
62. Garg T, Singh O, Arora S, Murthy R. Scaffold: A novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29: 1-63.
63. Manavitehrani I, Le TY, Daly S, Wang Y, Maitz PK, Schindeler A, et al. Formation of porous biodegradable scaffolds based on poly (propylene carbonate) using gas foaming technology. Mater Sci Eng C Mater Biol Appl 2019; 96: 824-830.
64. Echeverria Molina MI, Malollari KG, Komvopoulos K. Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol 2021; 9: 617141-617170.
65. Kobayashi M, Kadota J, Hashimoto Y, Fujisato T, Nakamura N, Kimura T, et al. Elastic modulus of ECM hydrogels derived from decellularized tissue affects capillary network formation in endothelial cells. Int J Mol Sci 2020; 21: 6304-6320.
66. Naghieh S, Sarker MD, Karamooz-Ravari MR, McInnes AD, Chen X. Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands. Appl Sci 2018; 8: 1422.
67. Guler S, Eichholz K, Chariyev-Prinz F, Pitacco P, Aydin HM, Kelly DJ, et al. Biofabrication of poly(glycerol sebacate) scaffolds functionalized with a decellularized bone extracellular matrix for bone tissue engineering. Bioengineering 2023; 10: 30-53.
68. Nam K, Kimura T, Kishida A. Preparation Fibrillized Collagen‐Glycosaminoglycan Complex Matrix Using Fibrillogenesis. Macromolecular Symposia, Wiley Online Library. 2015; 358: 95-105.
69. Suamte L, Tirkey A, Barman J, Babu PJ. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater Manufactur 2023; 1: 100011-100027.
70. Abbasi N, Hamlet S, Love RM, Nguyen N-T. Porous scaffolds for bone regeneration. J Sci Adv Mater Dev 2020; 5: 1-9.
71. Hwang PT, Murdock K, Alexander GC, Salaam AD, Ng JI, Lim DJ, et al. Poly (ɛ‐caprolactone)/gelatin composite electrospun scaffolds with porous crater‐like structures for tissue engineering. J Biomed Mater Res A 2016; 104: 1017-1029.
72. Bouta EM, McCarthy CW, Keim A, Wang HB, Gilbert RJ, Goldman J. Biomaterial guides for lymphatic endothelial cell alignment and migration. Acta Biomater 2011; 7: 1104-1113.
73. Li Y, Zhang Y, Zhang G. Comparative analysis of decellularization methods for the production of decellularized umbilical cord matrix. Curr Issues Mol Biol 2024; 46: 7686-7701.
74. Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24: 495-516.
75. Ozsvar J, Mithieux SM, Wang R, Weiss AS. Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 2015; 3: 800-809.
76. Siu MK, Cheng CY. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 2008; 636: 74-91.