1. Bergmark BA, Mathenge N, Merlini PA, Lawrence-Wright MB, Giugliano RP. Acute coronary syndromes. Lancet 2022; 399: 1347-1358.
2. Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: A matter of timing. Physiol Rev 2024;104: 659-725.
3. Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, et al. Reperfusion injury in patients with acute myocardial infarction: JACC scientific statement. J Am Coll Cardiol 2024; 83: 2196-2213.
4. Pieske B, Butler J, Filippatos G, Lam C, Maggioni AP, Ponikowski P, et al. Rationale and design of the SOluble guanylate Cyclase stimulatoR in heArT failurE Studies (SOCRATES). Eur J Heart Fail 2014; 16: 1026-1038.
5. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 2020; 382: 1883-1893.
6. Cai Y, Zhang B, Shalamu A, Gao T, Ge J. Soluble guanylate cyclase (sGC) stimulator vericiguat alleviates myocardial ischemia-reperfusion injury by improving microcirculation. Ann Transl Med 2022; 10: 662-675.
7. Zhu W, Ben Y, Shen Y, Liu W. Vericiguat protects against cardiac damage in a pig model of ischemia/reperfusion. PLoS One 2023; 18: e0295566-295577.
8. Nair SP, Sharma RK. Heat shock proteins and their expression in primary murine cardiac cell populations during ischemia and reperfusion. Mol Cell Biochem 2020; 464: 21-26.
9. Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C, et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004; 24:1435-1441.
10. Zhong GQ, Tu RH, Zeng ZY, Li QJ, He Y, Li S, et al. Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic postconditioning. J Surg Res 2014; 189: 198-206.
11. Griffin TM, Valdez TV, Mestril R. Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2004; 287: H1081-1088.
12. Amour J, Brzezinska AK, Weihrauch D, Billstrom AR, Zielonka J, Krolikowski JG, et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 2009; 110: 317-325.
13. Wang C, Qiao S, Hong L, Sun J, Che T, An J, et al. NOS cofactor tetrahydrobiopterin contributes to anesthetic preconditioning induced myocardial protection in the isolated ex vivo rat heart. Int J Mol Med 2020; 45: 615-622.
14. Chen SF, Wang H. An experimental study of protective effects of ischemic preconditioning and oxymatrine on lung ischemia reperfusion injury. Sichuan Da Xue Xue Bao Yi Xue Ban 2009; 40: 398-402.
15. Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, et al. Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning. Clin Hemorheol Microcirc 2020;76: 51-62.
16. Wang DX, Huang Z, Li QJ, Zhong GQ, He Y, Huang WQ, et al. Involvement of HSP90 in ischemic postconditioning-induced cardioprotection by inhibition of the complement system, JNK and inflammation. Acta Cir Bras 2020; 35: e202000105-202000114.
17. Cheng XF, He ST, Zhong GQ, Meng JJ, Wang M, Bi Q, et al. Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation. BMC Cardiovasc Disord 2023; 23: 58-70.
18. He J, Huang L, Sun K, Li J, Han S, Gao X, et al. Oleuropein alleviates myocardial ischemia-reperfusion injury by suppressing oxidative stress and excessive autophagy via TLR4/MAPK signaling pathway. Chin Med 2024; 19: 59-77.
19. Yuan X, Juan Z, Zhang R, Sun X, Yan R, Yue F, et al. Clemastine fumarate protects against myocardial ischemia reperfusion injury by activating the TLR4/PI3K/Akt signaling pathway. Front Pharmacol 2020; 11: 28-41.
20. Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ, et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 2006; 114: I270-274.
21. Chen X, Li X, Zhang W, He J, Xu B, Lei B, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism 2018; 83: 256-270.
22. Zeng JJ, Shi HQ, Ren FF, Zhao XS, Chen QY, Wang DJ, et al. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin 2023; 44: 1366-1379.
23. Hu XX, Fu L, Li Y, Lin ZB, Liu X, Wang JF, et al. The cardioprotective effect of vitamin E (alpha-tocopherol) is strongly related to age and gender in mice. PLoS One 2015; 10: e0137405-0137417.
24. Gáspár R, Pipicz M, Hawchar F, Kovács D, Djirackor L, Görbe A, et al. The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol 2016; 99: 138-150.
25. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011. PMID: 21595115
26. Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg 2022; 63: E255-266.
27. Mokhtari B, Azizi Y, Rostami Abookheili A, Aboutaleb N, Nazarinia D, Naderi N. Human amniotic membrane mesenchymal stem cells-conditioned medium attenuates myocardial ischemia-reperfusion injury in rats by targeting oxidative stress. Iran J Basic Med Sci 2020; 23: 1453-1461.
28. Wang D, He S, Zhong G, Meng J, Bi Q, Tu R. Effects of heat shock protein 90 on complement activation in myocardial ischemia/reperfusion injury after pioglitazone preconditioning. Adv Clin Exp Med 2023; 32: 1401-1412.
29. He ST, Wang DX, Meng JJ, Cheng XF, Bi Q, Zhong GQ, et al. HSP90-mediates liraglutide preconditioning-induced cardioprotection by inhibiting C5a and NF-κB. J Invest Surg 2022; 35: 1012–1020.
30. Gao M, Cai Q, Si H, Shi S, Wei H, Lv M, et al. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro. J Mol Histol 2022; 53: 679-689.
31. Zhang XD, Sun GX, Guo JJ, Hu CC, Sun RC, Yu HC. Effects of PPARγ agonist pioglitazone on cardiac fibrosis in diabetic mice by regulating PTEN/AKT/FAK pathway. Eur Rev Med Pharmacol Sci 2021; 25: 812-819.
32. Janssen W, Schwarz T, Bütehorn U, Steinke W, Sandmann S, Lang D, et al. Pharmacokinetics and mass balance of vericiguat in rats and dogs and distribution in rats. Xenobiotica 2022; 52: 453-462.
33. Najafi M. Effects of postconditioning, preconditioning and perfusion of L-carnitine during whole period of ischemia/ reperfusion on cardiac hemodynamic functions and myocardial infarction size in isolated rat heart. Iran J Basic Med Sci 2013; 16: 640-647.
34. Ding Z, Liu X, Jiang H, Zhao J, Temme S, Bouvain P, et al. A refined TTC assay precisely detects cardiac injury and cellular viability in the infarcted mouse heart. Sci Rep 2024; 14: 25214-25227.
35. Resnick-Silverman L. Using TUNEL assay to quantitate p53-induced apoptosis in mouse tissues. Methods Mol Biol 2021; 2267: 181-190.
36. Harshitha R, Arunraj DR. Real-time quantitative PCR: A tool for absolute and relative quantification. Biochem Mol Biol Educ 2021; 49: 800-812.
37. Cañada-García D, Arévalo JC. A simple, reproducible procedure for chemiluminescent Western blot quantification. Bio Protoc 2023; 13: e4667.
38. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: Executive summary: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 2022; 145: e876-894.
39. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24: 4-131.
40. Tu RH, Wang DX, Zhong GQ, Meng JJ, Wen H, Jie-Feng, et al. New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB. Open Med (Wars) 2021; 16: 1552-1563.
41. Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, et al. Heat shock protein 90: Biological functions, diseases, and therapeutic targets. MedComm 2024; 5: e470-500.
42. Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373: 20160530-20160548.
43. Kawai T, Ikegawa M, Ori D, Akira S. Decoding toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57: 649-673.
44. Yu L, Feng Z. The role of toll-like receptor signaling in the progression of heart failure. Mediators Inflamm 2018; 2018: 9874109-9874120.
45. Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016; 7: e2234-2244.
46. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105: 1158-1161.
47. Nakamura K, Kageyama S, Kupiec-Weglinski JW. Innate immunity in ischemia-reperfusion injury and graft rejection. Curr Opin Organ Transplant 2019; 24: 687-693.
48. Steenbergen C. The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol 2002; 97: 276-285.
49. Aamani N, Bagheri A, Masoumi Qajari N, Malekzadeh Shafaroudi M, Khonakdar-Tarsi A. JNK and p38 gene and protein expression during liver ischemia-reperfusion in a rat model treated with silibinin. Iran J Basic Med Sci 2022; 25: 1373–1381.
50. Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 2008; 65: 3525-3544.
51. Su Y, Zhao L, Lei D, Yang X. Inhibition of circ_0073932 attenuates myocardial ischemia‒reperfusion injury via miR-493-3p/FAF1/JNK. In Vitro Cell Dev Biol Anim 2024; 60: 628-643.
52. Xu T, Zhang K, Kan F, Li F, Yu B, Du W, et al. Adeno-associated virus 9-mediated small RNA interference of TLR4 alleviates myocardial ischemia and reperfusion injury by inhibition of the NF-κB and MAPK signaling pathways in rats. Curr Mol Med 2019; 19: 127-135.
53. Chang C, Hu L, Sun S, Song Y, Liu S, Wang J, et al. Regulatory role of the TLR4/JNK signaling pathway in sepsis‑induced myocardial dysfunction. Mol Med Rep 2021; 23: 334-344.
54. Xu H, Yao Y, Su Z, Yang Y, Kao R, Martin CM, et al. Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK. Am J Physiol Heart Circ Physiol 2011; 300: H913-921.
55. Yang Z, Xie Y, Li M, Chen W, Zhong C, Ju J, et al. Ramelteon alleviates myocardial ischemia/reperfusion injury (MIRI) through Sirt3--dependent regulation of cardiomyocyte apoptosis. Biomed Pharmacother 2024; 172: 116229-116239.
56. Hu B, Tian T, Li XT, Hao PP, Liu WC, Chen YG, et al. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep 2023; 28: 2158526-2158538.
57. Yovas A, Manjusha WA, Ponnian SMP. β-caryophyllene modulates B-cell lymphoma gene-2 family genes and inhibits the intrinsic pathway of apoptosis in isoproterenol-induced myocardial infarcted rats; A molecular mechanism. Eur J Pharmacol 2022; 932: 175181.
58. Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, et al. BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review). Int J Mol Med 2021; 47: 23-36.
59. Hasan A, Haque E, Hameed R, Maier PN, Irfan S, Kamil M, et al. Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90: Beclin-1: Bcl-2 interaction and down-regulating autophagy. Life Sci 2020;256:118000.