Non-coding RNAs as key players in neurodegeneration and brain tumors: Insights into therapeutic strategies

Document Type : Review Article

Authors

1 Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan

2 Department of Anesthesia Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq

3 Ahl al Bayt University, Karbala, Iraq

4 Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India

5 Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India

6 Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India

7 Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India

8 Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan

9 College of Nursing, National University of Science and Technology, Dhi Qar, Iraq

10 Pharmacy college, Al-Farahidi University, Iraq

11 Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq

12 Gilgamesh Ahliya University, Baghdad, Iraq

10.22038/ijbms.2025.85350.18446

Abstract

Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA types, have emerged as key regulators in neurodegenerative diseases and brain tumors. This review aims to provide insights into the role of ncRNAs in these conditions and their potential as diagnostic and therapeutic targets. We systematically reviewed literature from databases such as PubMed, Scopus, and Web of Science, applying specific inclusion and exclusion criteria to ensure comprehensive coverage of recent advancements. Although ncRNAs are involved in a range of molecular pathways, challenges in clinical translation, including specificity, cost, and validation, persist. This review highlights innovative strategies to overcome these barriers and promote the clinical application of ncRNAs. Moreover, we explore the emerging role of extracellular vesicle-enriched ncRNAs as cell-free therapeutic options for neurodegenerative diseases. The findings presented here emphasize the need for robust validation and the development of specific ncRNA-based treatments.

Keywords

Main Subjects


1. Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic tools for the analysis and prediction of ncRNA interactions. Int J Mol Sci 2021; 22: 11397-11413.
2. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem 2021; 65: 625-639.
3. Sangeeth A, Malleswarapu M, Mishra A, Gutti RK. Long non-coding RNAs as cellular metabolism and haematopoiesis regulators. J Pharmacol Exp Ther 2023; 384: 79-91.
4. Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, et al. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 2020; 39: 117-136.
5. Liang J, Wen J, Huang Z, Chen X-p, Zhang B-x, Chu L. Small nucleolar RNAs: Insight into their function in cancer. Front Oncol 2019; 9: 587-596.
6. Wang SW, Liu Z, Shi ZS. Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant 2018; 27: 1763-1777.
7. Liao J, Duan Y, Liu Y, Chen H, An Z, Chen Y, et al. Simvastatin alleviates glymphatic system damage via the VEGF-C/VEGFR3/PI3K-Akt pathway after experimental intracerebral hemorrhage. Brain Research Bulletin 2024; 216: 111045-111056.
8. Yang H, Zhou H, Fu M, Xu H, Huang H, Zhong M, et al. TMEM64 aggravates the malignant phenotype of glioma by activating the Wnt/β-catenin signaling pathway. Int J Biol Macromol 2024; 260: 129332-129344.
9. Zhang QY, Wang Q, Fu JX, Xu XX, Guo DS, Pan YC, et al. Multi targeted therapy for Alzheimer’s disease by guanidinium-modified calixarene and cyclodextrin co-assembly loaded with insulin. ACS nano 2024; 18: 33032-33041.
10. Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12: 11675-11698.
11. Ning S, Li X. Non-coding RNA Resources. Adv Exp Med Biol 2018; 1094: 1-7.
12. Mehta SL, Chokkalla AK, Vemuganti R. Noncoding RNA crosstalk in brain health and diseases. Neurochem Int 2021; 149: 105139.
13. Wu YY, Kuo HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci 2020; 27: 49-72.
14. Kuo MC, Liu SC, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28: 78-106.
15. Chen L, Ma Y, Ma X, Liu L, Jv X, Li A, et al. TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner. Free Radic Biol Med 2023; 208: 445-457.
16. Chitnis S, Hosseini R, Xie P. Brain tumor classification based on neural architecture search. Sci Rep 2022; 12: 19206-19218.
17. Xin S, Huang K, Zhu XG. Non-coding RNAs: Regulators of glioma cell epithelial-mesenchymal transformation. Pathol Res Pract 2019; 215: 152539.
18. Kim SH, Lim KH, Yang S, Joo JY. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J Hematol Oncol 2021; 14: 77-94.
19. Xia P, Li Q, Wu G, Huang Y. An immune-related lncRNA signature to predict survival in glioma patients. Cell Mol Neurobiol 2021; 41: 365-375.
20. Bahreini F, Jabbari P, Gossing W, Aziziyan F, Frohme M, Rezaei N. The role of noncoding RNAs in pituitary adenoma. Epigenomics 2021; 13: 1421-1437.
21. Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh Y. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2020; 723: 144126.
22. Li Y, Li G, Guo X, Yao H, Wang G, Li C. Non-coding RNA in bladder cancer. Cancer Lett 2020; 485: 38-44.
23. Wang E, Lemos Duarte M, Rothman LE, Cai D, Zhang B. Non-coding RNAs in Alzheimer’s disease: Perspectives from omics studies. Hum Mol Genet 2022; 31: R54-R61.
24. Kwok ZH, Ni K, Jin Y. Extracellular vesicle associated non-coding RNAs in lung infections and injury. Cells 2021; 10: 965-981.
25. Chen Y, Shi K, Fu X, Guo H, Gao T, Yu H. Diagnostic and prognostic potential of exosome non-coding RNAs in bladder cancer: A systematic review and meta-analysis. Front Oncol 2024; 14: 1336375-1336384.
26. Wang C, Jing J, Cheng L. Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest New Drugs 2018; 36: 1116-1132.
27. Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12: 121-136.
28. Jiang H, Zhang Y, Yue J, Shi Y, Xiao B, Xiao W, et al. Non-coding RNAs: The neuroinflammatory regulators in neurodegenerative diseases. Front Neurol 2022; 13: 929290-929305.
29. Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, et al. Non-coding RNAs and neurodegenerative diseases: Information of their roles in apoptosis. Mol Neurobiol 2024; 61: 4508-4537.
30. Chen H, Xu Z, Liu D. Small non-coding RNA and colorectal cancer. J Cell Mol Med 2019; 23: 3050-3057.
31. Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis 2017; 38: 485-491.
32. Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, et al. microRNA-based biomarkers in Alzheimer’s disease (AD). Front Neurosci 2020; 14: 585432-585448.
33. Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The role of microRNA in the inflammatory response of wound healing. Front Immunol 2022; 13: 852419-852430.
34. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15: 38-44.
35. Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875: 188491-188526.
36. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179: 1033-1055.
37. Cai A, Hu Y, Zhou Z, Qi Q, Wu Y, Dong P, et al. PIWI-interacting RNAs (piRNAs): Promising applications as emerging biomarkers for digestive system cancer. Front Mol Biosci 2022; 9: 848105-848117.
38. O’Brien A, Zhou T, Tan C, Alpini G, Glaser S. Role of non-coding RNAs in the Progression of liver cancer: Evidence from experimental models. Cancers (Basel) 2019; 11: 1652-1668.
39. Kedersha NL, Rome LH. Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol 1986; 103: 699-709.
40. Stadler PF, Chen JJ-L, Hackermüller J, Hoffmann S, Horn F, Khaitovich P, et al. Evolution of vault RNAs. Mol Biol Evol 2009; 26: 1975-1991.
41. Berger W, Steiner E, Grusch M, Elbling L, Micksche M. Vaults and the major vault protein: novel roles in signal pathway regulation and immunity. Cell Mol Life Sci 2009; 66: 43-61.
42. Wakatsuki S, Takahashi Y, Shibata M, Adachi N, Numakawa T, Kunugi H, et al. Small noncoding vault RNA modulates synapse formation by amplifying MAPK signaling. J Cell Biol 2021; 220: e201911078-201911100.
43. Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Mol Biol Rep 2022; 49: 11515-11534.
44. Vieira AS, Dogini DB, Lopes-Cendes I. Role of non-coding RNAs in non-aging-related neurological disorders. Braz J Med Biol Res 2018; 51: e7566-7576.
45. Subhramanyam CS, Hu Q. Non-Coding RNA in brain development and disorder. Curr Med Chem 2017; 24: 1983-1997.
46. Chen ML, Hong CG, Yue T, Li HM, Duan R, Hu WB, et al. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 2021; 11: 2395-2409.
47. Zetterberg H, Burnham SC. Blood-based molecular biomarkers for Alzheimer’s disease. Mol Brain 2019; 12: 26-33.
48. Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer’s Disease: Aspects and Challenges. Int J Mol Sci 2020; 21: 3517-3537.
49. Lee CY, Ryu IS, Ryu JH, Cho HJ. miRNAs as therapeutic tools in Alzheimer’s disease. Int J Mol Sci 2021; 22: 13012-13024.
50. Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA 2018; 9: 10-32.
51. Nikolac Perkovic M, Videtic Paska A, Konjevod M, Kouter K, Svob Strac D, Nedic Erjavec G, et al. Epigenetics of Alzheimer’s disease. Biomolecules 2021; 11: 195-233.
52. Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, et al. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2021; 26: 5636-5657.
53. Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 2017; 376: 242-254.
54. Angelopoulou E, Paudel YN, Piperi C. miR-124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150: 104515.
55. Li T, Le W. Biomarkers for Parkinson’s disease: How good are they? Neurosci Bull 2020; 36: 183-194.
56. Chen X, Cao W, Zhuang Y, Chen S, Li X. Integrative analysis of potential biomarkers and immune cell infiltration in Parkinson’s disease. Brain Research Bulletin 2021; 177: 53-63.
57. Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic regulation of neuroinflammation in Parkinson’s disease. Int J Mol Sci 2021; 22: 4956-4989.
58. Singh A, Sen D. MicroRNAs in Parkinson’s disease. Exp Brain Res 2017; 235: 2359-2374.
59. Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci Ç B. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 2016; 43: 1193-1204.
60. Pavlou MAS, Outeiro TF. Epigenetics in Parkinson’s disease. Adv Exp Med Biol 2017; 978: 363-390.
61. Manna I, Quattrone A, De Benedittis S, Iaccino E, Quattrone A. Roles of non-coding RNAs as novel diagnostic biomarkers in Parkinson’s disease. J Parkinsons Dis 2021; 11: 1475-1489.
62. Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS. Role of microRNAs in Parkinson’s disease. Int J Mol Sci 2019; 20: 5649-5671.
63. Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, et al. Non-coding RNAs in the brain-heart axis: The case of Parkinson’s disease. Int J Mol Sci 2020; 21: 6513-6540.
64. Cai LJ, Tu L, Huang XM, Huang J, Qiu N, Xie GH, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 2020; 13: 130-145.
65. Xin C, Liu J. Long non-coding RNAs in Parkinson’s disease. Neurochem Res 2021; 46: 1031-1042.
66. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10: 1252-1259.
67. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33: 607-619.
68. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 266: 56-63.
69. Liu Q, Gao Q, Zhang Y, Li Z, Mei X. MicroRNA-590 promotes pathogenic Th17 cell differentiation through targeting Tob1 and is associated with multiple sclerosis. Biochem Biophys Res Commun 2017; 493: 901-908.
70. Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y, et al. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem Biophys Res Commun 2017; 486: 759-766.
71. Guan H, Fan D, Mrelashvili D, Hao H, Singh NP, Singh UP, et al. Micro RNA let‐7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol 2013; 43: 104-114.
72. Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, et al. MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. J Immunol 2017; 198: 2626-2639.
73. Hamza H, Abdullah A. MicroRNA‐132 suppresses autoimmune encephalomyelitis by inducing cholinergic anti‐inflammation: A new Ahr‐based exploration. Eur J Immunol 2013; 43: 2771-2782.
74. Guan H, Singh UP, Rao R, Mrelashvili D, Sen S, Hao H, et al. Inverse correlation of expression of microRNA‐140‐5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells. Immunology 2016; 147: 488-498.
75. Guerau-de-Arellano M, Smith KM, Godlewski J, Liu Y, Winger R, Lawler SE, et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain 2011; 134: 3578-3589.
76. Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 2011; 187: 2213-2221.
77. Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, et al. miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol 2012; 189: 1567-1576.
78. De Santis G, Ferracin M, Biondani A, Caniatti L, Tola MR, Castellazzi M, et al. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 2010; 226: 165-171.
79. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res 2008; 68: 8191-8194.
80. Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, et al. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295: 148-161.
81. Aung LL, Mouradian MM, Dhib-Jalbut S, Balashov KE. MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. J Neuroimmunol 2015; 278: 185-189.
82. Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E. Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 1995; 201: 223-226.
83. Miyazaki Y, Li R, Rezk A, Misirliyan H, Moore C, Farooqi N, et al. A novel microRNA-132-surtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis. PloS One 2014; 9: e105421.
84. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17∼ 92 family of miRNA clusters. Cell 2008; 132: 875-886.
85. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar‐Or A, et al. miR‐155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Ann Neurol 2013; 74: 709-720.
86. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU. 1 pathway. Nat Med 2011; 17: 64-70.
87. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 2009; 132: 3342-3352.
88. Arruda LCM, Lorenzi JCC, Sousa A, Zanette DL, Palma PVB, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16,-155 and-142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 2015; 50: 380-389.
89. Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain 2011; 134: 2703-2721.
90. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010; 65: 597-611.
91. Milbreta U, Lin J, Pinese C, Ong W, Chin JS, Shirahama H, et al. Scaffold-mediated sustained, non-viral delivery of miR-219/miR-338 promotes CNS remyelination. Mol Ther 2019; 27: 411-423.
92. Santoro M, Nociti V, Lucchini M, De Fino C, Losavio FA, Mirabella M. Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J Mol Neurosci 2016; 59: 18-23.
93. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 2014; 53: 393-406.
94. Sung T-L, Rice AP. Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells. Retrovirology 2006; 3: 1-14.
95. Rossi S, Motta C, Studer V, Macchiarulo G, Volpe E, Barbieri F, et al. Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener 2014; 9: 1-11.
96. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. Lnc RNA GAS 5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017; 18: 1801-1816.
97. Zhang F, Liu G, Wei C, Gao C, Hao J. Linc‐MAF‐4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB J 2017; 31: 519-525.
98. Perdaens O, van Pesch V. MicroRNAs are dysregulated in peripheral blood mononuclear cells in multiple sclerosis and correlate with T cell mediators. J Neuroimmunol 2024; 386:578196.
99. Perdaens O, Bottemanne P, van Pesch V. MicroRNAs dysregulated in multiple sclerosis affect the differentiation of CG-4 cells, an oligodendrocyte progenitor cell line. Front Cell Neurosci 2024; 18: 1336439-1336463.
100. Zamani A, Dehghan Manshadi M, Akouchekian M, Salahshouri Far I. The association of miRNA-146a gene variation and multiple sclerosis in the iranian population. Med J Islam Repub Iran 2024; 38: 1-6.
101. Ali OA, Mohammed BJ. Impact of miR-155 Gene Polymorphism (rs767649 A> T) and miR-155 Gene Expression on Susceptibility to Multiple Sclerosis. Al-Anbar Med J 2024.
102. Iacoangeli A, Arndtsen C, Granato J, Sadiq S. Expression profiles of novel noncoding RNAs in the CSF and blood samples of multiple sclerosis patients (1020). AAN Enterprises; 2020.
103. Guo S, Yang J, Jiang B, Zhou N, Ding H, Zhou G, et al. MicroRNA editing patterns in Huntington’s disease. Sci Rep 2022; 12: 3173-3187.
104. Singh K, Roy I. Nucleic acid therapeutics in Huntington’s disease. Recent Pat Biotechnol 2019; 13: 187-206.
105. Nahalka J. The role of the protein–RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76: 2043-2058.
106. Tung CW, Huang PY, Chan SC, Cheng PH, Yang SH. The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington’s disease. J Biomed Sci 2021; 28: 59-70.
107. Neueder A, Bates GP. RNA related pathology in Huntington’s disease. Adv Exp Med Biol 2018; 1049: 85-101.
108. Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the development of aging-related neurodegenerative diseases. Front Mol Neurosci 2022; 15: 844193-844211.
109. Juźwik CA, S SD, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
110. Qiu L, Tan EK, Zeng L. microRNAs and neurodegenerative diseases. Adv Exp Med Biol 2015; 888: 85-105.
111. Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135: 111198-111211.
112. Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of aging and age-related neurodegenerative disorders. Prog Mol Biol Transl Sci 2018; 158: 49-82.
113. Tan X, Liu Y, Liu Y, Zhang T, Cong S. Dysregulation of long non-coding RNAs and their mechanisms in Huntington’s disease. J Neurosci Res 2021; 99: 2074-2090.
114. Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H, et al. Long non-coding RNAs in pathogenesis of neurodegenerative diseases. Front Cell Dev Biol 2021; 9: 719247-719262.
115. Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, et al. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2022; 145: 1598-1609.
116. Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: Mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11: 266-279.
117. Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2022; 19: 594-608.
118. Bennett SA, Tanaz R, Cobos SN, Torrente MP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 2019; 204: 19-30.
119. Joilin G, Gray E, Thompson AG, Bobeva Y, Talbot K, Weishaupt J, et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Commun 2020; 2: fcaa053-67.
120. Yang X, Ji Y, Wang W, Zhang L, Chen Z, Yu M, et al. Amyotrophic lateral sclerosis: Molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants (Basel) 2021; 10: 1012-1035.
121. Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 2017; 146: 47-94.
122. Nishimoto Y, Nakagawa S, Okano H. NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochem Int 2021; 150: 105175.
123. Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15: 261-278.
124. Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, et al. Insights into the role of LncRNAs and miRNAs in glioma progression and their potential as novel therapeutic targets. Cancers (Basel) 2023; 15: 3298-3331.
125. Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, Razaviyan J, Hadavi R, Jafarpour H, et al. Non-coding RNAs and brain tumors: Insights into their roles in apoptosis. Front Cell Dev Biol 2022; 9: 792185-792203.
126. Bozgeyik E, Bozgeyik I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene 2023; 851: 147012.
127. Saadatpour L, Fadaee E, Fadaei S, Nassiri Mansour R, Mohammadi M, Mousavi S, et al. Glioblastoma: Exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23: 415-418.
128. Kros JM, Mustafa DM, Dekker LJ, Sillevis Smitt PA, Luider TM, Zheng P-P. Circulating glioma biomarkers. Neuro-oncology 2015; 17:343-360.
129.Cumba Garcia L, Peterson T, Cepeda M, Johnson A, Parney I. Isolation and analysis of plasma-derived exosomes in patients with glioma. Front Oncol 2019; 9: 651-660.
130. Li Z, Ye L, Wang L, Quan R, Zhou Y, Li X. Identification of miRNA signatures in serum exosomes as a potential biomarker after radiotherapy treatment in glioma patients. Ann Diagn Pathol 2020; 44: 151436.
131. Shao N, Xue L, Wang R, Luo K, Zhi F, Lan Q. miR-454-3p is an exosomal biomarker and functions as a tumor suppressor in glioma. Mol Cancer Ther 2019; 18: 459-469.
132. Zottel A, Šamec N, Kump A, Dall’Olio LR, Pužar Dominkuš P, Romih R, et al. Analysis of mir-9-5p, mir-124-3p, mir-21-5p, mir-138-5p, and mir-1-3p in glioblastoma cell lines and extracellular vesicles. Int J Mol Sci 2020; 21: 8491-8513.
133. Stakaitis R, Pranckeviciene A, Steponaitis G, Tamasauskas A, Bunevicius A, Vaitkiene P. Unique interplay between molecular mir-181b/d biomarkers and health related quality of life score in the predictive glioma models. Int J Mol sciences 2020; 21: 7450-7465.
134. Chun S, Ahn S, Yeom C-H, Park S. Exosome proteome of U-87MG glioblastoma cells. Biology 2016; 5: 50-65.
135. Wang S, Xu Z, Zhang C, Yu R, Jiang J, Wang C, et al. High‐throughput sequencing‐based identification of serum exosomal differential miRNAs in high‐grade glioma and intracranial lymphoma. BioMed Res Int 2020; 2020: 2102645-21026654.
136. Santangelo A, Imbrucè P, Gardenghi B, Belli L, Agushi R, Tamanini A, et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J Neurooncol 2018; 136: 51-62.
137. Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C, et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 2018; 17: 1-7.
138. Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology 2015; 4: e1008347-1008355.
139. Galbo PM, Jr., Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, et al. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget 2017; 8: 114722-114735.
140. Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer 2020; 19: 66-80.
141. Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, et al. Post-transcriptional regulatory crosstalk between MicroRNAs and canonical TGF-β/BMP signalling cascades on osteoblast lineage: A comprehensive review. Int J Mol Sci 2023; 24: 6123-6167.
142. Balasubramaniyan V, Vaillant B, Wang S, Gumin J, Butalid ME, Sai K, et al. Aberrant mesenchymal differentiation of glioma stem-like cells: Implications for therapeutic targeting. Oncotarget 2015; 6: 31007-31017.
143. Ricci-Vitiani L, Pallini R, Larocca LM, Lombardi D, Signore M, Pierconti F, et al. Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 2008; 15: 1491-1498.
144. Kaye J, Mondal A, Foty R, Jia D, Langenfeld J. Bone morphogenetic protein receptor inhibitors suppress the growth of glioblastoma cells. Mol Cell Biochem 2022; 477: 1583-1595.
145. Goodwin CR, Liang L, Abu-Bonsrah N, Hdeib A, Elder BD, Kosztowski T, et al. Extraneural glioblastoma multiforme vertebral metastasis. World Neurosurg 2016; 89: 578-582.
146. Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, et al. miRNAs, mesenchymal stromal cells and major neoplastic and inflammatory skin diseases: A page being written: A systematic review. Int J Mol Sci 2023; 24: 8502-8517.
147. Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The role of Micro RNAs in regulating PI3K/AKT signaling pathways in glioblastoma. Iran J Pathol 2022; 17: 122-136.
148. Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, et al. The role of non-coding RNAs in glioma. Biomedicines 2022; 10: 2031.
149. Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The emerging role of non-coding RNAs in pituitary gland tumors and meningioma. Cancers 2021; 13: 5987-6007.
150. Barancheshmeh M, Najafzadehvarzi H, Shokrzadeh N, Aram C. Comparative analysis of fennel essential oil and manganese in PCOS rat model via modulating miR-145 expression and structure-based virtual screening of IGF2R protein to address insulin resistance and obesity. Obesity Med 2025; 53: 100574.
151. Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3: zcaa041-57.
152. Latowska J, Grabowska A, Zarębska Ż, Kuczyński K, Kuczyńska B, Rolle K. Non-coding RNAs in brain tumors, the contribution of lncRNAs, circRNAs, and snoRNAs to cancer development-their diagnostic and therapeutic potential. Int J Mol Sci 2020; 21: 7001-7031.
153. Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett 2015; 367: 122-128.
154. Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, et al. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget 2015; 6: 25339-25355.
155. Sun XH, Fan WJ, An ZJ, Sun Y. Inhibition of long noncoding RNA CRNDE increases chemosensitivity of medulloblastoma cells by targeting miR-29c-3p. Oncol Res 2020; 28: 95-102.
156. Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg 2016; 124: 129-136.
157. Angelopoulou E, Paudel YN, Piperi C. Critical role of HOX transcript antisense intergenic RNA (HOTAIR) in gliomas. J Mol Med 2020; 98: 1525-1546.
158. Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C, et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 2018; 17: 74-81.
159. Chakravadhanula M, Ozols VV, Hampton CN, Zhou L, Catchpoole D, Bhardwaj RD. Expression of the HOX genes and HOTAIR in atypical teratoid rhabdoid tumors and other pediatric brain tumors. Cancer Genet 2014; 207: 425-428.
160. Wang Z, Yuan J, Li L, Yang Y, Xu X, Wang Y. Long non-coding RNA XIST exerts oncogenic functions in human glioma by targeting miR-137. Am J Transl Res 2017; 9: 1845-1855.
161. Wang YP, Li HQ, Chen JX, Kong FG, Mo ZH, Wang JZ, et al. Overexpression of XIST facilitates cell proliferation, invasion and suppresses cell apoptosis by reducing radio-sensitivity of glioma cells via miR-329-3p/CREB1 axis. Eur Rev Med Pharmacol Sci 2020; 24: 3190-3203.
162. Eldesouki S, Samara KA, Qadri R, Obaideen AA, Otour AH, Habbal O, et al. XIST in Brain Cancer. Clinica Chimica Acta 2022; 531: 283-290.
163. Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D’Alessandris QG, et al. Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3. Neuro Oncol 2020; 22: 1771-1784.
164. Zhao H, Wang X, Feng X, Li X, Pan L, Liu J, et al. Long non-coding RNA MEG3 regulates proliferation, apoptosis, and autophagy and is associated with prognosis in glioma. J Neurooncol 2018; 140: 281-288.
165. Gong X, Huang M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther 2017; 24: 381-385.
166. Qin N, Tong GF, Sun LW, Xu XL. Long noncoding RNA MEG3 suppresses glioma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of miR-19a. Oncol Res 2017; 25: 1471-1478.
167. He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8: 73282-73295.
168. Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 2015; 6: 19759-19779.
169. Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 2016; 477: 743-748.
170. Cai H, Liu X, Zheng J, Xue Y, Ma J, Li Z, et al. Long non-coding RNA taurine up-regulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene 2017; 36: 318-331.
171. Liao Y, Zhang B, Zhang T, Zhang Y, Wang F. LncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by down-regulating lncRNA TUG1. Cancer Biother Radiopharm 2019; 34: 660-665.
172. Kang CM, Bai HL, Li XH, Huang RY, Zhao JJ, Dai XY, et al. The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth. EBioMedicine 2019; 45: 58-69.
173. Kang CM, Zhao JJ, Yuan YS, Liao JM, Yu KW, Li WK, et al. Long noncoding RNA RP11-732M18.3 promotes glioma angiogenesis by up-regulating VEGFA. Front Oncol 2022; 12: 873037-873051.
174. Kang CM, Hu YW, Nie Y, Zhao JY, Li SF, Chu S, et al. Long non-coding RNA RP5-833A20.1 inhibits proliferation, metastasis and cell cycle progression by suppressing the expression of NFIA in U251 cells. Mol Med Rep 2016; 14: 5288-5296.
175. Chen J, Chen Q, Xiao P, Jin W, Yu L. A novel framework for uncovering the coordinative spectrum-effect correlation of the effective components of Yangyin Tongnao Granules on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 2025; 337: 118844.
176. Yang X, Liang Y, Tong S. Advancing cancer treatment: In vivo delivery of therapeutic small noncoding RNAs. Front Mol Biosci 2024; 10: 1297413-1297422.
177. Zhu X, Yu G, Lv Y, Yang N, Zhao Y, Li F, et al. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. Burns  Trauma 2024; 12: tkae035-054.
178. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov 2021; 20: 629-651.
179. Lan Z, Tan F, He J, Liu J, Lu M, Hu Z, et al. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. Phytomedicine 2024; 129: 155635-156652.
180. Zhang C, Ge H, Zhang S, Liu D, Jiang Z, Lan C, et al. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage. Neurol Ther 2021; 10: 1001-1013.
181. Liu S, Li X, Xie Q, Zhang S, Liang X, Li S, et al. Identification of a lncRNA/circRNA-miRNA-mRNA network in Nasopharyngeal Carcinoma by deep sequencing and bioinformatics analysis. J Cancer 2024; 15: 1916-1928.
182. Grillone K, Caridà G, Luciano F, Cordua A, Di Martino MT, Tagliaferri P, et al. A systematic review of non-coding RNA therapeutics in early clinical trials: A new perspective against cancer. J Transl Med 2024; 22: 731-743.
183. Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, et al. m6A-mediated up-regulation of lncRNA CHASERR promotes the progression of glioma by modulating the miR-6893-3p/TRIM14 axis. Mol Neurobiol 2024; 61: 5418-5440.
184. Yin M, Feng C, Yu Z, Zhang Y, Li Y, Wang X, et al. sc2GWAS: A comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res 2025; 53: D1151-D1161.
185. Yang Z, Liu X, Xu H, Teschendorff AE, Xu L, Li J, et al. Integrative analysis of genomic and epigenomic regulation reveals miRNA mediated tumor heterogeneity and immune evasion in lower grade glioma. Commun Biol 2024; 7: 824-844.
186. Wang WT, Han C, Sun YM, Chen TQ, Chen YQ. Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol 2019; 12: 1-15.
187. Duan WW, Yang LT, Liu J, Dai ZY, Wang ZY, Zhang H, et al. A TGF‐β signaling‐related lncRNA signature for prediction of glioma prognosis, immune microenvironment, and immunotherapy response. CNS Neurosci Ther 2024; 30: e14489-14508.
188. Uppaluri KR, Challa HJ, Gaur A, Jain R, Vardhani KK, Geddam A, et al. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl Oncol 2023; 35: 101730-101740.
189. Dai J, Gao J, Dong H. Prognostic relevance and validation of ARPC1A in the progression of low-grade glioma. Aging (Albany NY) 2024; 16: 11162-11184.
190. Wang L, Li X, Deng Z, Cai Q, Lei P, Xu H, et al. Neuroendoscopic parafascicular evacuation of spontaneous intracerebral hemorrhage (NESICH technique): A multicenter technical experience with preliminary findings. Neurol Ther 2024; 13: 1259-1271.
191. Zhou C, Kuang M, Tao Y, Wang J, Luo Y, Fu Y, et al. Nynrin preserves hematopoietic stem cell function by inhibiting the mitochondrial permeability transition pore opening. Cell Stem Cell 2024; 31: 1359-1375.
192. Feng D, Li P, Xiao W, Pei Z, Chen P, Hu M, et al. N6-methyladenosine profiling reveals that Xuefu Zhuyu decoction up-regulates METTL14 and BDNF in a rat model of traumatic brain injury. J Ethnopharmacol 2023; 317: 116823.
193. Rezaee D, Saadatpour F, Akbari N, Zoghi A, Najafi S, Beyranvand P, et al. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 2023; 92: 102090.
194. Luo H, Xiang Y, Qu X, Liu H, Liu C, Li G, et al. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol 2019; 10: 395-410.
195. Bao MH, Li G-Y, Huang XS, Tang L, Dong LP, Li JM. Long noncoding RNA LINC00657 acting as a mir-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein–induced angiogenesis. Mol Pharmacol 2018; 93: 368-375.
196. Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 2020; 383: 109-119.
197. Ji D, Luo ZW, Ovcjak A, Alanazi R, Bao M-H, Feng ZP, et al. Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacologica Sinica 2022; 43: 759-770.
198. Gao XH, Tang JJ, Liu HR, Liu LB, Liu YZ. Structure-activity study of fluorine or chlorine‐substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev Res 2019; 80: 438-445.
199. Lu QQ, Chen YM, Liu HR, Yan JY, Cui PW, Zhang QF, et al. Nitrogen‐containing flavonoid and their analogs with diverse B‐ring in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev Res 2020; 81: 1037-1047.
200. Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189: 114469.
201. Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. Adv Drug Alcohol Res 2022; 2: 10807-10822.
202. Kim G, Chen X, Yang Y. Pathogenic extracellular vesicle (EV) signaling in amyotrophic lateral sclerosis (ALS). Neurotherapeutics 2022; 19: 1119-1132.
203. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol 2019; 25: 702-709.
204. Li C, Ni Y-Q, Xu H, Xiang Q-Y, Zhao Y, Zhan J-K, et al. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6: 383-414.
205. Chen J-j, Zhao B, Zhao J, Li S. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast 2017; 2017: 7027380-7027392.
206. Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M. Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Mol Neurosci 2019; 69: 351-359.
207. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6: 37043-37053.
208. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Rashnoo F. A review on the role of PCA3 lncRNA in carcinogenesis with an especial focus on prostate cancer. Pathol Res Pract 2022; 231: 153800.
209. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 2014; 10: e1003517-3539.
210. Wang D, Wang P, Bian X, Xu S, Zhou Q, Zhang Y, et al. Elevated plasma levels of exosomal BACE1‑AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease. Mol Med Rep 2020; 22: 227-238.
211. Canseco-Rodriguez A, Masola V, Aliperti V, Meseguer-Beltran M, Donizetti A, Sanchez-Perez AM. Long non-coding RNAs, extracellular vesicles and inflammation in Alzheimer’s disease. Int J Mol Sci 2022; 23: 13171-13185.
212. Hu E, Li T, Li Z, Su H, Yan Q, Wang L, et al. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury. Pharm Biol 2023; 61: 1054-1064.
213. Bhattacharyya P, Biswas A, Biswas SC. Brain-enriched miR-128: Reduced in exosomes from Parkinson’s patient plasma, improves synaptic integrity, and prevents 6-OHDA mediated neuronal apoptosis. Front Cell Neurosci 2023; 16: 1037903-1037914.
214. Haroon K, Zheng H, Wu S, Liu Z, Tang Y, Yang GY, et al. Engineered exosomes mediated targeted delivery of neuroprotective peptide NR2B9c for the treatment of traumatic brain injury. Int J Pharm 2024; 649: 123656.
215. Zhang H, Wang L, Wang X, Deng L, He B, Yi X, et al. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur J Pharmacol 2024; 977: 176724.
216. Huang H, Liao Y, Yu Y, Qin H, Wei YZ, Cao L. Adult-onset neuronal ceroid lipofuscinosis misdiagnosed as autoimmune encephalitis and normal-pressure hydrocephalus: A 10-year case report and case-based review. Medicine 2024; 103: e40248-40256.
217. Liu C, Seneviratne CJ, Palma C, Rice G, Salomon C, Khanabdali R, et al. Immunoaffinity-enriched salivary small extracellular vesicles in periodontitis. Extracell Vesicles Circ Nucl Acids 2023; 4: 698-712.
218. Park S, Jalaludin I, Hwang H, Ko M, Adelipour M, Hwan M, et al. Size-exclusion chromatography for the characterization of urinary extracellular vesicles. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123828.
219. Mussack V, Wittmann G, Pfaffl MW. Comparing small urinary extracellular vesicle purification methods with a view to RNA sequencing—Enabling robust and non-invasive biomarker research. Biomol Detect Quantif 2019; 17: 100089-100101.
220. Vahkal B, Kraft J, Ferretti E, Chung M, Beaulieu J-F, Altosaar I. Review of methodological approaches to human milk small extracellular vesicle proteomics. Biomolecules 2021; 11: 833-848.
221. Torabi C, Choi S-E, Pisanic TR, Paulaitis M, Hur SC. Streamlined miRNA loading of surface protein-specific extracellular vesicle subpopulations through electroporation. Biomed Eng Online 2024; 23: 116-139.
222. Lang C, Lin HT, Wu C, Alavi M. In Silico analysis of the sequence and structure of plant microRNAs packaged in extracellular vesicles. Comput Biol Chem 2022; 101: 107771.
223. Van Dorpe S, Tummers P, Denys H, Hendrix A. Towards the clinical implementation of extracellular vesicle-based biomarker assays for cancer. Clin Chem 2024; 70: 165-178.