1. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109: 93-108.
2. Franceschi E, Tosoni A, Bartolini S, Minichillo S, Mura A, Asioli S, et al. Histopathological grading affects survival in patients with IDH-mutant grade II and grade III diffuse gliomas. Eur J Cancer 2020; 137:10–17.
3. Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: Differentiation by using perfusion MR imaging. Clin Radiol 2005; 60: 493-502.
4. Nayak L, Reardon DA. High-grade gliomas. CONTINUUM: Lifelong Learning in Neurology 2017; 23: 1548–1563.
5. Delgado-Lopez PD, Corrales-Garcia EM. Survival in glioblastoma: A review on the impact of treatment modalities. Clin Transl Oncol 2016; 18: 1062–1071.
6. Forst DA, Nahed BV, Loeffler JS, Batchelor TT. Low-grade gliomas. The oncologist 2014; 19: 403–413.
7. Han T, Zuo Z, Qu M, Zhou Y, Li Q, Wang H. Comprehensive analysis of inflammatory response-related genes, and prognosis and immune infiltration in patients with low-grade glioma. Front Pharmacol 2021; 12: 748993-749008.
8. Kemerdere R, Akgun MY, Toklu S, Alizada O, Tanriverdi T. Preoperative systemic inflammatory markers in low- and high-grade gliomas: A retrospective analysis of 171 patients. Heliyon 2019; 5: e01681-1686.
9. Liang R, Chen N, Li M, Wang X, Mao Q, Liu Y. Significance of systemic immune-inflammation index in the differential diagnosis of high- and low-grade gliomas. Clin Neurol Neurosurg 2018; 164: 50-52.
10. Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol 2021; 14: 176.
11. Tsan MF. Toll-like receptors, inflammation and cancer. Semin Cancer Biol 2006; 16: 32–37.
12. Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 2007; 7: 1271–1285.
13. El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: An overview. Bulletin of the National Research Centre 2019; 43: 1–12.
14. Beutler BA. TLRs and innate immunity. Blood 2009; 113: 1399-1407.
15. Sameer AS, Nissar S. Toll-like receptors (TLRs): Structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed Res Int 2021; 2021: 1157023-1157037.
16. Javaid N, Choi S. Toll-like receptors from the perspective of cancer treatment. Cancers 2020; 12: 297-334.
17. Wang H, Song X, Li M, Wang X, Tao Y, Xiya X, et al. The role of TLR4/NF-κB signaling pathway in activated microglia of rats with chronic high intraocular pressure and vitro scratch injury-induced microglia. Int Immunopharmacol 2020; 83: 106395.
18. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, et al. Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro Oncol 2013; 15: 1457-1468.
19. Haghparast A, Heidari Kharaji M, Malvandi AM. Down-regulation of CD14 transcripts in human glioblastoma cell line U87 MG. Iran J Immunol 2011; 8: 111-119.
20. Malvandi AM, Mehrzad J, Moghaddam MS. Gene expression quantification of toll like receptors 2, 4 and co-molecules in human glioblastoma cell line (U87-MG): Toward a new in vitro model of inflammation. Iran J Basic Med Sci 2011; 14: 428-435.
21. Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, et al. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer 2010; 10: 415-426.
22. Armocida D, Frati A, Salvati M, Santoro A, Pesce A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter Progression Free survival? A clinical and molecular analytic investigation. Clin Neurol Neurosurg 2020; 198: 106126.
23. Liu J, Reeves C, Jacques T, McEvoy A, Miserocchi A, Thompson P, et al. Nestin-expressing cell types in the temporal lobe and hippocampus: Morphology, differentiation, and proliferative capacity. Glia 2018; 66: 62-77.
24. Sugawara K-i, Kurihara H, Negishi M, Saito N, Nakazato Y, Sasaki T, et al. Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 2002; 82: 345–351.
25. Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103: e38245-38256.
26. Zadora P, Dabrowski W, Czarko K, Smolen A, Kotlinska-Hasiec E, Wiorkowski K, et al. Preoperative neutrophil-lymphocyte count ratio helps predict the grade of glial tumor - a pilot study. Neurol Neurochir Pol 2015; 49: 41-44.
27. Auezova R, Ryskeldiev N, Doskaliyev A, Kuanyshev Y, Zhetpisbaev B, Aldiyarova N, et al. Association of preoperative levels of selected blood inflammatory markers with prognosis in gliomas. Onco Targets Ther 2016; 9: 6111-6117.
28. Wiencke JK, Koestler DC, Salas LA, Wiemels JL, Roy RP, Hansen HM, et al. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin Epigenetics 2017; 9: 10-21.
29. Zhang YB, He FL, Fang M, Hua TF, Hu BD, Zhang ZH, et al. Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep 2009; 36: 1475-1481.
30. Beilmann-Lehtonen I, Bockelman C, Mustonen H, Koskensalo S, Hagstrom J, Haglund C. The prognostic role of tissue TLR2 and TLR4 in colorectal cancer. Virchows Arch 2020; 477: 705-715.
31. Ran S. The role of TLR4 in chemotherapy-driven metastasis. Cancer Res 2015; 75: 2405-2410.
32. Rajput S, Volk-Draper LD, Ran S. TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther 2013; 12: 1676–1687.
33. Li C, Ma L, Liu Y, Li Z, Wang Q, Chen Z, et al. TLR2 promotes development and progression of human glioma via enhancing autophagy. Gene 2019; 700: 52-59.
34. Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004; 228:79–102.
35. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 2009; 8: 443-450.
36. Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 2008; 6: 21-30.
37. da Cruz LLP, de Souza PO, Dal Pra M, Falchetti M, de Abreu AM, Azambuja JH, et al. TLR4 expression and functionality are downregulated in glioblastoma cells and in tumor-associated macrophages: A new mechanism of immune evasion? Biochim Biophys Acta Mol Basis Dis 2021; 1867: 166155-166168.
38. Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2017; 222: 89-100.
39. Kan M, Song L, Zhang X, Zhang J, Fang P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz J Med Biol Res 2019; 52: e7374-7381.
40. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF. Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160: 105172.
41. Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, et al. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446: 120584-120592.
42.Zhang S, Chen F, Zhai F, Liang S. Role of HMGB1/TLR4 and IL-1β/IL-1R1 signaling pathways in epilepsy. Front Neurol 2022; 13: 904225-904236.
43. Kamaşak T, Dilber B, Yaman SÖ, Durgut BD, Kurt T, Çoban E, et al. HMGB‐1, TLR4, IL‐1R1, TNF‐α, and IL‐1β: Novel epilepsy markers? Epileptic Disord 2020; 22: 183-193.
44. Yang W, Li J, Shang Y, Zhao L, Wang M, Shi J, et al. HMGB1-TLR4 axis plays a regulatory role in the pathogenesis of mesial temporal lobe epilepsy in immature rat model and children via the p38MAPK signaling pathway. Neurochem Res 2017; 42: 1179-1190.
45. Dong J, Liao Y, Wu B. TAK-242 ameliorates epileptic symptoms in mice by inhibiting the TLR4/NF-κB signaling pathway. Ann Transl Med 2022; 10: 795-803.
46. Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, et al. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 2013; 22: 675–678.
47. Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-κB in glioblastoma: A therapeutic approach. Sci Adv 2016; 2:e1501292-1501303.
48. Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: The impact of spreading depolarization. J Neuroinflammation 2020; 17: 108-121.
49. Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like receptor signaling pathways: Novel therapeutic targets for cerebrovascular disorders. Int J Mol Sci 2021; 22: 6153-6176.
50. Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: A phylogenetically conserved paradigm in innate immunity. J Clin Invest 2001; 107: 13-19.
51. Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351: 122808.
52. Meshkinkhood N, Barati Dowom P, Noorbakhsh F, Ghadipasha M, Gharehdaghi J, Kellinghaus C, et al. Unveiling molecular dynamics of MeCp2, CDKL5 and BDNF in the hippocampus of individuals with intractable mesial temporal lobe epilepsy. J Cell Mol Med 2025; 29: e70373-70390.