1. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol 2017; 18:826-831.
2. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell 2015; 160:816-827.
3. Straub RH. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat Rev Rheumatol 2017; 13:743-751.
4. Fullerton JN, Gilroy DW. Resolution of inflammation: A new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-567.
5. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 2013; 109 Suppl 1:S1-S34.
6. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25:1822-1832.
7. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481:278-286.
8. Zhu X, Huang H, Zhao L. PAMPs and DAMPs as the bridge between periodontitis and atherosclerosis: The potential therapeutic targets. Front Cell Dev Biol 2022; 10:856118.
9. Torina A, Villari S, Blanda V, Vullo S, La Manna MP, Shekarkar Azgomi M, et al. Innate immune response to tick-borne pathogens: cellular and molecular mechanisms induced in the hosts. Int J Mol Sci 2020; 21:5437-5459.
10. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20:3328-3351.
11. Guo H, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21:677-687.
12. Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. Phytomedicine 2024; 126:155352.
13. Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: An aspect on pharmacological insights. Naunyn Schmiedebergs Arch Pharmacol 2023; 396:2241-2259.
14. Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B, et al. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Ther Med 2020; 49:102322.
15. Zhang L-X, Li C-X, Kakar MU, Khan MS, Wu P-F, Amir RM, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164.
16. Ren B, Kwah MX-Y, Liu C, Ma Z, Shanmugam MK, Ding L, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515:63-72.
17. Parsamanesh N, Asghari A, Sardari S, Tasbandi A, Jamialahmadi T, Xu S, et al. Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725.
18. Omraninava M, Razi B, Aslani S, Imani D, Jamialahmadi T, Sahebkar A. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials. Eur J Pharmacol 2021; 908:174380.
19. Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 2014; 63:693-701.
20. Chiang MC, Nicol CJB, Lo SS, Hung SW, Wang CJ, Lin CH. Resveratrol mitigates oxygen and glucose deprivation-induced inflammation, NLRP3 inflammasome, and oxidative stress in 3D neuronal culture. Int J Mol Sci 2022; 23:11678-11697.
21. Gal R, Deres L, Toth K, Halmosi R, Habon T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int J Mol Sci 2021; 22:10152-10173.
22. Zhou D-D, Luo M, Huang S-Y, Saimaiti A, Shang A, Gan R-Y, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev 2021; 2021:1-15.
23. Hoseini A, Namazi G, Farrokhian A, Reiner Ž, Aghadavod E, Bahmani F, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct 2019; 10:6042-6051.
24. Vestergaard M, Ingmer H. Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 2019; 53:716-723.
25. Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, et al. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J 2022; 19:9-28.
26. Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, et al. Resveratrol’biotechnological applications: Enlightening its antimicrobial and antioxidant properties. J Herb Med 2022; 32:100550.
27. Cui B, Wang Y, Jin J, Yang Z, Guo R, Li X, et al. Resveratrol treats UVB-induced photoaging by anti-MMP expression, through anti-inflammatory, antioxidant, and antiapoptotic properties, and treats photoaging by upregulating VEGF-B expression. Oxid Med Cell Longev 2022; 2022:6037303.
28. Gao X, Xu YX, Janakiraman N, Chapman RA, Gautam SC. Immunomodulatory activity of resveratrol: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem Pharmacol 2001; 62:1299-1308.
29. Fuggetta MP, Bordignon V, Cottarelli A, Macchi B, Frezza C, Cordiali-Fei P, et al. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. J Exp Clin Cancer Res 2016; 35:118-126.
30. Tufekci KU, Eltutan BI, Isci KB, Genc S. Resveratrol inhibits NLRP3 inflammasome-induced pyroptosis and miR-155 expression in microglia through Sirt1/AMPK pathway. Neurotox Res 2021; 39:1812-1829.
31. Feng H, Mou S-q, Li W-j, Zhang N, Zhou Z-y, Ding W, et al. Resveratrol inhibits ischemia-induced myocardial senescence signals and NLRP3 inflammasome activation. Oxid Med Cell Longev 2020; 2020:2647807.
32. Ding S, Wang H, Wang M, Bai L, Yu P, Wu W. Resveratrol alleviates chronic “real-world” ambient particulate matter-induced lung inflammation and fibrosis by inhibiting NLRP3 inflammasome activation in mice. Ecotoxicol Environ Saf 2019; 182:109425.
33. Koumangoye R. The role of Cl(-) and K(+) efflux in NLRP3 inflammasome and innate immune response activation. Am J Physiol Cell Physiol 2022; 322:C645-C652.
34. Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol 2012; 13:325-332.
35. de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol 2014; 6:a016287.
36. Ulland TK, Ferguson PJ, Sutterwala FS. Evasion of inflammasome activation by microbial pathogens. J Clin Invest 2015; 125:469-477.
37. Rolfes V, Ribeiro LS, Hawwari I, Böttcher L, Rosero N, Maasewerd S, et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep 2020; 31:107615.
38. Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell 2020; 180:1044-1066.
39. Zhao C, Zhao W. NLRP3 inflammasome-A key player in antiviral responses. Front Immunol 2020; 11:211-218.
40. Lechtenberg BC, Mace PD, Riedl SJ. Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol 2014; 29:17-25.
41. Barker BR, Taxman DJ, Ting JP. Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 2011; 23:591-597.
42. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861-869.
43. Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552.
44. Soundara Rajan T, Giacoppo S, Diomede F, Bramanti P, Trubiani O, Mazzon E. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. Int J Immunopathol Pharmacol 2017; 30:238-252.
45. Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R, et al. PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. Embo J 2020; 39:e102201.
46. Harris J, Lang T, Thomas JP, Sukkar MB, Nabar NR, Kehrl JH. Autophagy and inflammasomes. Mol Immunol 2017; 86:10-15.
47. Liang Z, Damianou A, Di Daniel E, Kessler BM. Inflammasome activation controlled by the interplay between post-translational modifications: emerging drug target opportunities. Cell Commun Signal 2021; 19:1-12.
48. Ta A, Vanaja SK. Inflammasome activation and evasion by bacterial pathogens. Curr Opin Immunol 2021; 68:125-133.
49. Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: An updated review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1779-1795.
50. Ghasemzadeh Rahbardar M, Hosseinzadeh H. Neuroprotective effects of walnut (Juglans regia L.) in nervous system disorders: A comprehensive review. Iran J Basic Med Sci 2024; 27:1492-1505.
51. Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Investigating the ameliorative effect of alpha-mangostin on development and existing pain in a rat model of neuropathic pain. Phytother Res 2020; 34:3211-3225.
52. Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86:441-449.
53. Jalali J, Ghasemzadeh Rahbardar M. Ameliorative effects of Portulaca oleracea L. (purslane) and its active constituents on nervous system disorders: A review. Iran J Basic Med Sci 2023; 26:2-12.
54. Rahbardar MG, Hosseinzadeh H. Mechanisms of action of herbal antidepressants. In: Martin CR, Hunter L-A, Patel VB, Preedy VR, Rajendram R, editors. The neuroscience of depression: Academic Press; 2021. p. 503-518.
55. Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181.
56. Najafi N, Mahboobeh GR, Hossein H, Wallace HA, and Karimi G. Chemical agents protective against rotenone-induced neurotoxicity. Toxicol Environ Chem 2022; 104:149-175.
57. Sun Y, Koyama Y, Shimada S. Inflammation from peripheral organs to the brain: How does systemic inflammation cause neuroinflammation? Front Aging Neurosci 2022; 14:903455.
58. Kapadia M, Sakic B. Autoimmune and inflammatory mechanisms of CNS damage. Prog Neurobiol 2011; 95:301-333.
59. Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, et al. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int J Mol Sci 2022; 23:14498-14523.
60. Ghasemzadeh MR, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Effect of alcoholic extract of aerial parts of Rosmarinus officinalis L. on pain, inflammation and apoptosis induced by chronic constriction injury (CCI) model of neuropathic pain in rats. J Ethnopharmacol 2016; 194:117-130.
61. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3:136-150.
62. Su X, Liu B, Wang S, Wang Y, Zhang Z, Zhou H, et al. NLRP3 inflammasome: A potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl Immunol 2022:101718.
63. Yu Q, Zhao T, Liu M, Cao D, Li J, Li Y, et al. Targeting NLRP3 inflammasome in translational treatment of nervous system diseases: An update. Front Pharmacol 2021; 12:707696.
64. Li W, Liang J, Li S, Wang L, Xu S, Jiang S, et al. Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain. Int Immunopharmacol 2022; 110:109026.
65. Söderbom G, Zeng B-Y. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. Int Rev Neurobiol 2020; 154:345-391.
66. Xia D, Yuan J, Wu D, Dai H, Zhuang Z. Salvianolic acid B ameliorates neuroinflammation and neuronal injury via blocking NLRP3 inflammasome and promoting SIRT1 in experimental subarachnoid hemorrhage. Front Immunol 2023; 14:1159958.
67. Milner MT, Maddugoda M, Götz J, Burgener SS, Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol 2021; 68:116-124.
68. Khot M, Sood A, Tryphena KP, Khan S, Srivastava S, Singh SB, et al. NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in parkinson’s disease. Eur J Pharmacol 2022:175300.
69. Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. Adv Protein Chem Str 2020; 119:247-308.
70. Zhu F, Wang L, Gong Z, Wang Y, Gao Y, Cai W, et al. Blockage of NLRP3 inflammasome activation ameliorates acute inflammatory injury and long-term cognitive impairment induced by necrotizing enterocolitis in mice. J Neuroinflammation 2021; 18:1-12.
71. Yang T, Zhang L, Shang Y, Zhu Z, Jin S, Guo Z, et al. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer’s disease. Chem Sci 2022; 13:2971-2980.
72. Guo X, Zhang Y, Liu C, Ren L, Gao S, Bi J, et al. Intranasal administration of β‐1, 3‐galactosyltransferase 2 confers neuroprotection against ischemic stroke by likely inhibiting oxidative stress and NLRP3 inflammasome activation. FASEB J 2022; 36:e22542.
73. Feng L, Zhang L. Resveratrol suppresses Aβ-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. DNA Cell Biol 2019; 38:874-879.
74. Schlotterose L, Pravdivtseva MS, Ellermann F, Jansen O, Hövener JB, Sönnichsen FD, et al. Resveratrol mitigates metabolism in human microglia cells. Antioxidants 2023; 12:1248.
75. Zhang C, Peng Q, Tang Y, Wang C, Wang S, Yu D, et al. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J Cancer Res Clin Oncol 2024; 150:168-179.
76. Bartra C, Yuan Y, Vuraić K, Valdés-Quiroz H, Garcia-Baucells P, Slevin M, et al. Resveratrol activates antioxidant protective mechanisms in cellular models of Alzheimer’s disease inflammation. Antioxidants 2024; 13:177-195.
77. Chiang M-C, Yang Y-P, Nicol CJB, Chiang T, Yen C. Resveratrol-enhanced human neural stem cell-derived exosomes mitigate MPP+-induced neurotoxicity through activation of AMPK and Nrf2 pathways and inhibition of the NLRP3 inflammasome in SH-SY5Y cells. Life 2025; 15:294-318.
78. Sui DM, Xie Q, Yi WJ, Gupta S, Yu XY, Li JB, et al. Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β axis in microglia. Mediators Inflamm 2016; 2016:1045657.
79. Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol 2019; 70:28-36.
80. Li D, Dai Y, Li Z, Bi H, Li H, Wang Y, et al. Resveratrol upregulates miR‐124‐3p expression to target DAPK1, regulating the NLRP3/Caspase‐1/GSDMD pathway to inhibit pyroptosis and alleviate spinal cord injury. J Cell Mol Med 2025; 29:e70338.
81. Zhang X, Wu Q, Zhang Q, Lu Y, Liu J, Li W, et al. Resveratrol attenuates early brain injury after experimental subarachnoid hemorrhage via inhibition of NLRP3 inflammasome activation. Front Neurosci 2017; 11:611-622.
82. He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 2017; 50:208-215.
83. Zou P, Liu X, Li G, Wang Y. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1. Mol Med Rep 2018; 17:3212-3217.
84. Zarebavani M, Baghaei Naeini F, Farahvash A, Moradi F, Dashti N. Resveratrol attenuates chronic social isolation stress‐induced affective disorders: Involvement of NF‐κB/NLRP3 axis. J Biochem Mol Toxicol 2023; 37:e23311.
85. Ghasemzadeh Rahbardar M, Eisvand F, Rameshrad M, Razavi BM, Tabatabaee Yazdi A, Hosseinzadeh H. Carnosic acid mitigates doxorubicin-induced cardiac toxicity: Evidence from animal and cell model investigations. Iran J Basic Med Sci 2024; 27:425-438.
86. Rashki M, Ghasemzadeh Rahbardar M, Boskabady MH. Nutritional advantages of walnut (Juglans regia L.) for cardiovascular diseases: A comprehensive review. Food Sci Nutr 2025; 13:e4526.
87. Zhou W, Chen C, Chen Z, Liu L, Jiang J, Wu Z, et al. NLRP3: A novel mediator in cardiovascular disease. J Immunol Res 2018; 2018:5702103.
88. Burger F, Baptista D, Roth A, da Silva RF, Montecucco F, Mach F, et al. NLRP3 inflammasome activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis. Int J Mol Sci 2021; 23:340-356.
89. Tong Y, Wang Z, Cai L, Lin L, Liu J, Cheng J. NLRP3 inflammasome and its central role in the cardiovascular diseases. Oxid Med Cell Longev 2020; 2020:4293206.
90. Molla MD, Akalu Y, Geto Z, Dagnew B, Ayelign B, Shibabaw T. Role of caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases. J Inflamm Res 2020; 13:749-764.
91. Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, et al. Inflammatory mediators of endothelial dysfunction. Life 2023; 13:1420-1438.
92. Wu J, Dong E, Zhang Y, Xiao H. The role of the inflammasome in heart failure. Front Physiol 2021; 12:709703-709714.
93. Liao Y, Liu K, Zhu L. Emerging roles of inflammasomes in cardiovascular diseases. Front Immunol 2022; 13:834289.
94. Wang R, Wang Y, Wu J, Guo Y, Xiao H, Zhang Y, et al. Resveratrol targets AKT1 to inhibit inflammasome activation in cardiomyocytes under acute sympathetic stress. Front Pharmacol 2022; 13:818127-818137.
95. Dong W, Yang R, Yang J, Yang J, Ding J, Wu H, et al. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway. Int J Clin Exp Pathol 2015; 8:8731-8741.
96. Deng ZY, Hu MM, Xin YF, Gang C. Resveratrol alleviates vascular inflammatory injury by inhibiting inflammasome activation in rats with hypercholesterolemia and vitamin D2 treatment. Inflamm Res 2015; 64:321-332.
97. Yang K, Li W, Duan W, Jiang Y, Huang N, Li Y, et al. Resveratrol attenuates pulmonary embolism associated cardiac injury by suppressing activation of the inflammasome via the MALAT1‑miR‑22‑3p signaling pathway. Int J Mol Med 2019; 44:2311-2320.
98. Sun ZM, Guan P, Luo LF, Qin LY, Wang N, Zhao YS, et al. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci 2020; 245:117362.
99. Maayah ZH, Alam AS, Takahara S, Soni S, Ferdaoussi M, Matsumura N, et al. Resveratrol reduces cardiac NLRP3-inflammasome activation and systemic inflammation to lessen doxorubicin-induced cardiotoxicity in juvenile mice. FEBS Lett 2021; 595:1681-1695.
100. Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF-β1/SMAD2 signaling pathway. PeerJ 2021; 9:e11501.
101. Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci 2022; 296:120424.
102. Luo CJ, Li T, Li HL, Zhou Y, Li L. Resveratrol pretreatment alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis by targeting TLR4/MyD88/NF-κB signaling cascade in coronary microembolization-induced myocardial damage. Korean J Physiol Pharmacol 2023; 27:143-155.
103. Ghasemzadeh Rahbardar M, Razavi BM, Naraki K, Hosseinzadeh H. Therapeutic effects of minocycline on oleic acid-induced acute respiratory distress syndrome (ARDS) in rats. Naunyn Schmiedebergs Arch Pharmacol 2023; 396:3233-3242.
104. Boskabady MH, Rahbardar MG, Jafari Z. The effect of safranal on histamine (H(1)) receptors of guinea pig tracheal chains. Fitoterapia 2011; 82:162-167.
105. Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis 2015; 9:188-197.
106. Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780.
107. Kim RY, Pinkerton JW, Gibson PG, Cooper MA, Horvat JC, Hansbro PM. Inflammasomes in COPD and neutrophilic asthma. Thorax 2015; 70:1199-1201.
108. Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, et al. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166.
109. Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750.
110. Cao X, Tian S, Fu M, Li Y, Sun Y, Liu J, et al. Resveratrol protects human bronchial epithelial cells against nickel-induced toxicity via suppressing p38 MAPK, NF-κB signaling, and NLRP3 inflammasome activation. Environ Toxicol 2020; 35:609-618.
111. Tang J, Li Y, Wang J, Wu Q, Yan H. Polydatin suppresses the development of lung inflammation and fibrosis by inhibiting activation of the NACHT domain-, leucine-rich repeat-, and pyd-containing protein 3 inflammasome and the nuclear factor-κB pathway after Mycoplasma pneumoniae infection. J Cell Biochem 2019; 120:10137-10144.
112. Ding S, Wang H, Wang M, Bai L, Yu P, Wu W. Resveratrol alleviates chronic “real-world” ambient particulate matter-induced lung inflammation and fibrosis by inhibiting NLRP3 inflammasome activation in mice. Ecotoxicol Environ Saf 2019; 182:109425.
113. Lu YN, Lu JM, Jin GN, Shen XY, Wang JH, Ma JW, et al. A novel mechanism of resveratrol alleviates Toxoplasma gondii infection-induced pulmonary inflammation via inhibiting inflammasome activation. Phytomedicine 2024; 131:155765.
114. Jiang L, Zhang L, Kang K, Fei D, Gong R, Cao Y, et al. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother 2016; 84:130-138.
115. Wu S, Huang J. Resveratrol alleviates Staphylococcus aureus pneumonia by inhibition of the NLRP3 inflammasome. Exp Ther Med 2017; 14:6099-6104.
116. Fei J, Qin X, Ma H, Zhang X, Wang H, Han J, et al. Resveratrol ameliorates deep vein thrombosis-induced inflammatory response through inhibiting HIF-1α/NLRP3 pathway. Inflammation 2022; 45:2268-2279.
117. Wu D, Zhang H, Li F, Liu S, Wang Y, Zhang Z, et al. Resveratrol alleviates acute lusng injury in mice by promoting Pink1/Parkin-related mitophagy and inhibiting NLRP3 inflammasome activation. Biochim Biophys Acta Gen Subj 2024; 1868:130612.
118. Rajabian F, Mehri S, Razavi BM, Khajavi Rad A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of trans-sodium crocetinate on contrast-induced cytotoxicity in HEK-293 cells. Iran J Basic Med Sci 2023; 26:148-156.
119. Rajabalizadeh R, Ghasemzadeh Rahbardar M, Razavi BM, H H. Renoprotective effects of crocin against colistin-induced nephrotoxicity in a rat model. Iran J Basic Med Sci 2024; 27:151-156.
120. Komada T, Muruve DA. The role of inflammasomes in kidney disease. Nat Rev Nephrol 2019; 15:501-520.
121. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010; 21:1732-1744.
122. Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 2016; 21:736-744.
123. Wang M, Lin X, Yang X, Yang Y. Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Ren Fail 2022; 44:615-624.
124. Lin YF, Lee YH, Hsu YH, Chen YJ, Lin YF, Cheng FY, et al. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine 2017; 12:2741-2756.
125. Tian X, Zhang S, Zhang Q, Kang L, Ma C, Feng L, et al. Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma. J Nutr Biochem 2020; 85:108489.
126. Chen YH, Fu YC, Wu MJ. Does resveratrol play a role in decreasing the inflammation associated with contrast induced nephropathy in rat model? J Clin Med 2019; 8:147-157.
127. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: Clinical aspects and treatments. J Inflamm Res 2014:113-120.
128. Masamune A, Hamada S. Mechanisms of inflammation and fibrosis interplays in the digestive diseases. Front Physiol 2022; 13:906742.
129. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest 2017; 127:55-64.
130. Al Mamun A, Akter A, Hossain S, Sarker T, Safa SA, Mustafa QG, et al. Role of NLRP3 inflammasome in liver disease. J Dig Dis 2020; 21:430-436.
131. Lazaridis L-D, Pistiki A, Giamarellos-Bourboulis EJ, Georgitsi M, Damoraki G, Polymeros D, et al. Activation of NLRP3 inflammasome in inflammatory bowel disease: Differences between Crohn’s disease and ulcerative colitis. Dig Dis Sci 2017; 62:2348-2356.
132. Arifa RD, Madeira MF, de Paula TP, Lima RL, Tavares LD, Menezes-Garcia Z, et al. Inflammasome activation is reactive oxygen species dependent and mediates irinotecan-induced mucositis through IL-1β and IL-18 in mice. Am J Pathol 2014; 184:2023-2034.
133. Langness S, Kojima M, Coimbra R, Eliceiri BP, Costantini TW. Enteric glia cells are critical to limiting the intestinal inflammatory response after injury. Am J Physiol Gastrointest Liver Physiol 2017; 312:G274-G282.
134. Man SM. Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat Rev Gastro Hepat 2018; 15:721-737.
135. Zhao P, Jiajia N, Jun H, and Huang X. Mechanism of resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity 2024; 57:2427094.
136. Zhang M, Chen S, Bai L, Chen W, Li R. Protective effects of resveratrol on cytotoxicity of mouse hepatic stellate cells induced by PM2.5. Atmosphere 2024; 15:588.
137. Li T, Liang M, Li Z, Gu F, Guo Q, Wang Q. Synthesis of novel resveratrol nervonic acid ester using a solvent-free mechanochemical method: Improved lipophilicity, thermostability, and oxidation stability. Food Chem 2025; 480:143958.
138. Mlakić M, Odak I, Barić D, Talić S, Šagud I, Štefanić Z, et al. New resveratrol analogs as improved biologically active structures: Design, synthesis and computational modeling. Bioorganic Chemistry 2024; 143:106965.
139. Chen Y, Zheng Z, Li C, Pan Y, Tang X, Wang XJ. Synthetic imine resveratrol analog 2-methoxyl-3,6-dihydroxyl-IRA ameliorates colitis by activating protective Nrf2 pathway and inhibiting NLRP3 expression. Oxid Med Cell Longev 2019; 2019:7180284.
140. Gulifeire T, Yang C, Li X, Wang Y, Yu X. Effects of resveratrol-mediated inhibition of NOD-like receptor protein 3 inflammasomevia activating silent information regulator 1 on the injury of intestinal mucosal barrier function after sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2021; 33:535-540.
141. Wu S-k, Wang L, Wang F, Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci Rep 2024; 14:26216-26230.
142. Tung BT, Rodríguez-Bies E, Talero E, Gamero-Estévez E, Motilva V, Navas P, et al. Anti-inflammatory effect of resveratrol in old mice liver. Exp Gerontol 2015; 64:1-7.
143. Zhao W, Huang X, Han X, Hu D, Hu X, Li Y, et al. Resveratrol suppresses gut-derived NLRP3 inflammasome partly through stabilizing mast cells in a rat model. Mediators Inflamm 2018; 2018:6158671.
144. Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci 2020; 253:117727.
145. Sun H, Cai H, Fu Y, Wang Q, Ji K, Du L, et al. The protection effect of resveratrol against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice. Dose Response 2020; 18:1559325820931292.
146. Yang C, Luo P, Chen S-j, Deng Z-c, Fu X-l, Xu D-n, et al. Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress. Poult Sci 2021; 100:101459.
147. Yang H, Wang Y, Yu C, Jiao Y, Zhang R, Jin S, et al. Dietary resveratrol alleviates AFB1-induced ileum damage in ducks via the Nrf2 and NF-κB/NLRP3 signaling pathways and CYP1A1/2 expressions. Agriculture 2022; 12:54-67.
148. Hsu MH, Huang YC, Chen YC, Sheen JM, Huang LT. Increased circulating ADMA in young male rats caused cognitive deficits and increased intestinal and hippocampal NLRP3 inflammasome expression and microbiota composition alterations: Effects of resveratrol. Pharmaceuticals 2023; 16:825-837.
149. Pang J, Raka F, Heirali AA, Shao W, Liu D, Gu J, et al. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat Commun 2023; 14:2656-2673.
150. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis Oncol 2017; 1:35-43.
151. de Rivero Vaccari JP. The inflammasome in reproductive biology: A promising target for novel therapies. Front Endocrinol 2020; 11:8-12.
152. Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci 2020; 256:117890.
153. Wang K-L, Chiang Y-F, Huang K-C, Chen H-Y, Ali M, Hsia S-M. Alleviating 3-MCPD-induced male reproductive toxicity: Mechanistic insights and resveratrol intervention. Ecotoxicol Environ Saf 2024; 271:115978.
154. Wei H, Zhang Z, Zhang S, Wang J, Cui X, Zhang Z, et al. Resveratrol improves follicular development in PCOS rats by inhibiting the inflammatory response and pyroptosis of granulosa cells. Biol Reprod 2024; doi: 10.1093/biolre/ioae160.
155. Taha M, Ali LS, El-Nablaway M, Ibrahim MM, Badawy AM, Farage AE, et al. Multifaceted impacts of monosodium glutamate on testicular morphology: Insights into pyroptosis and therapeutic potential of resveratrol. Folia Morphol 2025; 84:151-166.