1. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child Adolesc Health 2022; 6:158-170.
2. Sundarakumar JS, Stezin A, Menesgere AL, Ravindranath V. Rural-urban and gender differences in metabolic syndrome in the aging population from southern India: Two parallel, prospective cohort studies. eClinicalMedicine 2022; 47:101395.
3. Ader M, Bergman RN. Hyperinsulinemic compensation for insulin resistance occurs independent of elevated glycemia in male dogs. Endocrinology 2021; 162:bqab119.
4. Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 2008; 37:635-646.
5. Mendizábal Y, Llorens S, Nava E. Hypertension in metabolic syndrome: vascular pathophysiology. Int J Hypertens 2013; 2013:230868.
6. Stanciu S, Rusu E, Miricescu D, Radu AC, Axinia B, Vrabie AM, et al. Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites 2023; 13:87.
7. Shah A, Mehta N, Reilly MP. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr 2008; 32:638-644.
8. Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:786.
9. Jha BK, Sherpa ML, Imran M, Mohammed Y, Jha LA, Paudel KR, et al. Progress in Understanding Metabolic Syndrome and Knowledge of Its Complex Pathophysiology. Diabetology 2023; 4:134-159.
10. Codazzi V, Frontino G, Galimberti L, Giustina A, Petrelli A. Mechanisms and risk factors of metabolic syndrome in children and adolescents. Endocrine 2024; 84:16-28.
11. Magnussen CG, Koskinen J, Chen W, Thomson R, Schmidt MD, Srinivasan SR, et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation 2010; 122:1604-1611.
12. Yarmohammadi F, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iran J Basic Med Sci 2021; 24:420-427.
13. Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean Diet and Cardiovascular Health. Circ Res 2019; 124:779-798.
14. Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 2016; 8:33-42.
15. Mashayekhi-Sardoo H, Sepahi S, Baradaran Rahimi V, Askari VR. Application of Nigella sativa as a functional food in diabetes and related complications: Insights on molecular, cellular, and metabolic effects. J Funct Foods 2024; 122:106518.
16. Liu K, Luo M, Wei S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. Oxid Med Cell Longev 2019; 2019:6713194.
17. Rameshrad M, Razavi BM, Ferns GAA, Hosseinzadeh H. Pharmacology of dipeptidyl peptidase-4 inhibitors and its use in the management of metabolic syndrome: a comprehensive review on drug repositioning. Daru 2019; 27:341-360.
18. Rameshrad M, Razavi BM, Lalau JD, De Broe ME, Hosseinzadeh H. An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning. Iran J Basic Med Sci 2020; 23:556-568.
19. Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed Pharmacother 2022; 153:113256.
20. Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI. Chamomile as a potential remedy for obesity and metabolic syndrome. Excli j 2021; 20:1261-1286.
21. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97:1679-1685.
22. Samei M, Dowlatkhahi N, Boozari M, Hosseinzadeh H. Can daily consumption of enriched fatty acids diet be effective in improving metabolic syndrome? An attractive paradox for walnut kernel. Food Sci Nutr 2024; 12:2311-2333.
23. Esmaeelpanah E, Razavi BM, Hosseinzadeh H. Green tea and metabolic syndrome: A 10-year research update review. Iran J Basic Med Sci 2021; 24:1159-1172.
24. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res 2021; 35:5352-5364.
25. Castellano JM, Ramos-Romero S, Perona JS. Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022; 14:623.
26. Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF. Caffeic Acid on Metabolic Syndrome: A Review. Molecules 2021; 26:5490.
27. Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, et al. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915.
28. Lee H, Kong G, Tran Q, Kim C, Park J, Park J. Relationship Between Ginsenoside Rg3 and Metabolic Syndrome. Front Pharmacol 2020; 11:130.
29. Adeyi OE, Somade OT, Ajayi BO, James AS, Adeyi AO, Olayemi ZM, et al. Syringic acid demonstrates better anti-apoptotic, anti-inflammatory and antioxidative effects than ascorbic acid via maintenance of the endogenous antioxidants and down-regulation of pro-inflammatory and apoptotic markers in DMN-induced hepatotoxicity in rats. Biochem Biophys Rep 2023; 33:101428.
30. Rashedinia M, Khoshnoud MJ, Fahlyan BK, Hashemi SS, Alimohammadi M, Sabahi Z. Syringic Acid: A Potential Natural Compound for the Management of Renal Oxidative Stress and Mitochondrial Biogenesis in Diabetic Rats. Curr Drug Discov Technol 2021; 18:405-413.
31. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother 2018; 108:547-557.
32. Kumar M, Suhag R, Hasan M, Dhumal S, Radha, Pandiselvam R, et al. Black soybean (Glycine max (L.) Merr.): paving the way toward new nutraceutical. Crit Rev Food Sci Nutr 2023; 63:6208-6234.
33. Bartel I, Mandryk I, Horbańczuk JO, Wierzbicka A, Koszarska M. Nutraceutical Properties of Syringic Acid in Civilization Diseases-Review. Nutrients 2023; 16:10.
34. Minich A, Levarski Z, Mikulášová M, Straka M, Liptáková A, Stuchlík S. Complex Analysis of Vanillin and Syringic Acid as Natural Antimicrobial Agents against Staphylococcus epidermidis Biofilms. Int J Mol Sci 2022; 23:1816.
35. Sahari Sh, Soumya N, Mondal S, Saraswathy M. Syringic acid affords antioxidant protection in the pancreas of type 2 diabetic rats. Bioact Compd Health Dis 2023; 6:13.
36. Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathan U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Dis 2013; 2:304-309.
37. Mirza AC, Panchal SS, Allam AA, Othman SI, Satia M, Mandhane SN. Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules 2022; 27:6722.
38. Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880.
39. Ham JR, Lee HI, Choi RY, Sim MO, Seo KI, Lee MK. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food Funct 2016; 7:689-697.
40. Somade OT, Oyinloye BE, Ajiboye BO, Osukoya OA. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats. Biochemistry and Biophysics Reports 2023; 34:101484.
41. Demir EA. Syringic acid alleviates cisplatin-induced ovarian injury through modulating endoplasmic reticulum stress, inflammation and Nrf2 pathway. J Trace Elem Med Biol 2024; 82:127356.
42. Liu G, Zhang B-f, Hu Q, Liu X-p, Chen J. Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway. Biochem Biophys Res Commun 2020; 531:242-249.
43. Somade OT, Adeyi OE, Ajayi BO, Asunde OO, Iloh PD, Adesanya AA, et al. Syringic and ascorbic acids prevent NDMA-induced pulmonary fibrogenesis, inflammation, apoptosis, and oxidative stress through the regulation of PI3K-Akt/PKB-mTOR-PTEN signaling pathway. Metabolism Open 2022; 14:100179.
44. Mashayekhi-sardoo H, Kamali H, Mehri S, Sahebkar A, Imenshahidi M, Mohammadpour AH. Comparison of pharmacokinetic parameters of ranolazine between diabetic and non-diabetic rats. Iran J Basic Med Sci 2022; 25:865-870.
45. Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep 2024; 7:e2004.
46. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023; 402:203-234.
47. Sharif H, Sheikh SS, Seemi T, Naeem H, Khan U, Jan SS. Metabolic syndrome and obesity among marginalised school-going adolescents in Karachi, Pakistan: a cross-sectional study. Lancet Reg Health Southeast Asia 2024; 21:100354.
48. Mashayekhi-Sardoo H, Atkin SL, Montecucco F, Sahebkar A. Potential Alteration of Statin-Related Pharmacological Features in Diabetes Mellitus. Biomed Res Int 2021; 2021:6698743.
49. Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, et al. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734.
50. Siegel KR, Bullard KM, Imperatore G, Ali MK, Albright A, Mercado CI, et al. Prevalence of Major Behavioral Risk Factors for Type 2 Diabetes. Diabetes Care 2018; 41:1032-1039.
51. Mashayekhi-Sardoo H, Mohammadpour AH, Mehri S, Kamali H, Sahebkar A, Imenshahidi M. Diabetes mellitus aggravates ranolazine-induced ECG changes in rats. J Interv Card Electrophysiol 2022; 63:379-388.
52. Fayed A, Alzeidan R, Elkouny R, Tawfik M, Naguib R. Cardiovascular Risk Among Patients with Controlled and Uncontrolled Type 2 Diabetes: A Sub-Cohort Analysis from the Heart Health Promotion (HHP) Study. Int J Gen Med 2023; 16:1171-1180.
53. Latha VA, Mondu SSD, Dinesh Eshwar M, Polala AR, Nandanavanam S, Dodda S. Dyslipidemia Among Diabetes Mellitus Patients: A Case-Control Study From a Tertiary Care Hospital in South India. Cureus 2023; 15:e35625.
54. Lee M-K, Han K, Kim MK, Koh ES, Kim ES, Nam GE, et al. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study. Sci Rep 2020; 10:2313.
55.Melkonian EA, Schury MP. Biochemistry, Anaerobic Glycolysis. StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.
56. Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 2020; 22:603-611.
57.Mahmoud S, Ibrahim A. Fruits and Vegetables as Sources of Functional Phytochemicals for the Prevention and Management of Obesity, Diabetes, and Cancer. 2021. p. 147-167.
58. Vadizadeh A, badiee ms, saburi e, Fakhredini F, Kalantar H, Rafiei Asl S, et al. Syringic acid attenuates sodium arsenite-induced hepatotoxicity and diabetes in mice via suppression of oxidative stress/inflammation/apoptosis pathways. Avicenna Journal of Phytomedicine 2025.
59. Srinivasan S, Muthukumaran J, Muruganathan U, Venkatesan RS, Jalaludeen AM. Antihyperglycemic effect of syringic acid on attenuating the key enzymes of carbohydrate metabolism in experimental diabetic rats. Biomed Prev Nutr 2014; 4:595-602.
60. Sahari Sh, Saraswathy M. Syringic Acid Alleviates Hyperglycemia by Regulating Hepatic Key Enzymes of Carbohydrate Metabolism in Streptozotocin-induced Diabetic Rats. Asian J Biol Life Sci 2023; 12:66-72.
61. Ramorobi L, Matowane R, Mashele S, Erukainure O, Makhafola T, Chukwuma C. Therapeutic Antidiabetic and Antioxidative Synergism of Zn(II)-Syringic Acid Complexation. Revista Brasileira de Farmacognosia 2023; 33:1-13.
62. Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan BC, et al. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurol 2022; 21:922-936.
63. Quiroz-Aldave JE, del Carmen Durand-Vásquez M, Puelles-León SL, Concepción-Urteaga LA, Concepción-Zavaleta MJ. Treatment-induced neuropathy of diabetes: an underdiagnosed entity. Lancet Neurol 2023; 22:201-202.
64. Rashedinia M, Alimohammadi M, Shalfroushan N, Khoshnoud MJ, Mansourian M, Azarpira N, et al. Neuroprotective Effect of Syringic Acid by Modulation of Oxidative Stress and Mitochondrial Mass in Diabetic Rats. Biomed Res Int 2020; 2020:8297984.
65. Chang Y, Moradi H, Kalantar-Zadeh K. Emerging paradigms of treating diabetic nephropathy. Lancet Diabetes Endocrinol 2018; 6:912-913.
66. Harjutsalo V, Kallio M, Forsblom C, Groop P-H. The impact of diabetic nephropathy and severe diabetic retinopathy on chronic limb threatening ischemia risk in individuals with type 1 diabetes: a nationwide, population study. Lancet Reg Health Eur 2023; 28:100594.
67. Aquino C, Miranda E, Júnior F, Lucena H, Oliveira J, Lima Neto J, et al. Diabetic Nephropathy as a Result of Uncontrolled Hyperglycemia. Revista de Gestão Social e Ambiental 2024; 18:e07716.
68. Sherkhane B, Yerra VG, Sharma A, Kumar KA, Chayanika G, Kumar AV, et al. Nephroprotective potential of syringic acid in experimental diabetic nephropathy: Focus on oxidative stress and autophagy. Indian J Pharmacol 2023; 55:34-42.
69. Achek A, Kwon H-K, Patra MC, Shah M, Hong R, Lee WH, et al. A peptide derived from the core β-sheet region of TIRAP decoys TLR4 and reduces inflammatory and autoimmune symptoms in murine models. eBioMedicine 2020; 52:102645.
70. Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing 2023; 20:67.
71. Zabad O, Samra Y, Eissa L. Syringic acid ameliorates experimental diabetic nephropathy in rats through its antiinflammatory, anti-oxidant and anti-fibrotic effects by suppressing Toll like receptor-4 pathway. Metabolism 2022; 128:154966.
72. Senjam SS. Diabetes and diabetic retinopathy: the growing public health concerns in India. Lancet Glob Health 2024; 12:e727-e728.
73. Das T, Islam K, Dorji P, Narayanan R, Rani PK, Takkar B, et al. Health transition and eye care policy planning for people with diabetic retinopathy in south Asia. Lancet Reg Health Southeast Asia 2024; 27:100435.
74. Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC. Cataracts. Lancet 2023; 401:377-389.
75. Zhang R, Dong L, Yang Q, Liu Y, Li H, Zhou W, et al. Prophylactic interventions for preventing macular edema after cataract surgery in patients with diabetes: A Bayesian network meta-analysis of randomized controlled trials. eClinicalMedicine 2022; 49:101463.
76. Wei X, Chen D, Yi Y, Qi H, Gao X, Fang H, et al. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity. Evid Based Complement Alternat Med 2012; 2012:426537.
77. Wu J, Li X, Fang H, Yi Y, Chen D, Long Y, et al. Investigation of synergistic mechanism and identification of interaction site of aldose reductase with the combination of gigantol and syringic acid for prevention of diabetic cataract. BMC Complement Altern Med 2016; 16:286.
78. Wang C, Shirzaei Sani E, Shih C-D, Lim CT, Wang J, Armstrong DG, et al. Wound management materials and technologies from bench to bedside and beyond. Nat Rev Mater 2024:550–566.
79. Alahtavakoli M, Vazirinejad R, Ansari Jaberi A, Negahban T, Mashayekhi H, Nazari M, et al. Effect of Teucrium polium extract on skin wound healing in rat. Hormozgan Med J 2012; 16:17-24.
80. Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616.
81. Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521.
82. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med 2017; 376:2367-2375.
83. Willems R. Health economic considerations to effectively implement telemonitoring of diabetic foot ulcer. Lancet Reg Health Eur 2023; 32:100688.
84. Jeffcoate W, Boyko EJ, Game F, Cowled P, Senneville E, Fitridge R. Causes, prevention, and management of diabetes-related foot ulcers. Lancet Diabetes Endocrinol 2024; 12:472-482.
85. Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. BioFactors 2023; 49:736-781.
86. Couturier A, Calissi C, Cracowski J-L, Sigaudo-Roussel D, Khouri C, Roustit M. Mouse models of diabetes-related ulcers: a systematic review and network meta-analysis. eBioMedicine 2023; 98:104856.
87. Ren J, Yang M, Xu F, Chen J, Ma S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci 2019; 233:116728.
88. Padalkar R, Madgulkar A, Kharade R. Wound Healing Dressing System for Diabetic Wounds Based on Curcumin and Syringic Acid. Int J Pharm Investig 2022; 12:82-86.
89. Sabahi Z, Khoshnoud MJ, Khalvati B, Hashemi S-S, Ghasempour Farsani Z, Mogholi Gerashi H, et al. Syringic acid improves oxidative stress and mitochondrial biogenesis in the liver of streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2020; 10:111-119.
90. Sadeghi M, Miroliaei M, Kamyabiamineh A, Taslimi P, Ghanadian M. The impact of AGEs on human health and the development of their inhibitors based on natural compounds. Arab J Chem 2023; 16:105143.
91. Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218.
92. Khalid M, Petroianu G, Adem A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:542.
93. Bhattacherjee A, Datta A. Mechanism of antiglycating properties of syringic and chlorogenic acids in in vitro glycation system. Food Res Int 2015; 77:540-548.
94. Ramorobi LM, Matowane GR, Mashele SS, Swain SS, Makhafola TJ, Mfengwana P-M-AH, et al. Zinc(II) – Syringic acid complexation synergistically exerts antioxidant action and modulates glucose uptake and utilization in L-6 myotubes and rat muscle tissue. Biomed Pharmacother 2022; 154:113600.
95. Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, et al. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444.
96. Ye X, Wang Y, Tian Y, Bi R, Li M, Yang C, et al. Metformin alleviates junctional epithelium senescence via the AMPK/SIRT1/autophagy pathway in periodontitis induced by hyperglycemia. Heliyon 2024; 10:e27478.
97. Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182.
98. Yang R, Li X, Mei J, Wan W, Huang X, Yang Q, et al. Protective effect of syringic acid via restoring cells biomechanics and organelle structure in human lens epithelial cells. J Bioenerg Biomembr 2021; 53:275-284.
99. Stefan N, Schulze MB. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol 2023; 11:426-440.
100. Marott JL, Ingebrigtsen TS, Çolak Y, Kankaanranta H, Bakke PS, Vestbo J, et al. Impact of the metabolic syndrome on cardiopulmonary morbidity and mortality in individuals with lung function impairment: a prospective cohort study of the Danish general population. Lancet Reg Health Eur 2023; 35:100759.
101. Danaei G, Lu Y, Singh GM, Carnahan E, Stevens GA, Cowan MJ, et al. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol 2014; 2:634-647.
102. Sabahi Z, Khoshnoud MJ, Hosseini S, Khoshraftar F, Rashedinia M. Syringic Acid Attenuates Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. Adv Pharmacol Pharm Sci 2021; 2021:5018092.
103. Rajyaguru C, Chavda S, Navin S, Rabadiya S. Beneficial Role of Syringic acid on Cardiovascular and Renal Complications Associated with Type I Diabetes Mellitus in Rats. Indian J Pharmacol 2013; 45:S9-S9.
104. Gao Z, Shaik AH, Lin M, Jia L, Ma L, Liu Y, et al. Syringic acid, resveratrol and gallic acid compounds lipid metabolizing enzymes regulatory activity in isoproterenol-induced cardiac necrosis in rats. J King Saud Univ Sci 2024; 36:103272.
105. Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by down-regulating Ereg. J Cell Mol Med 2022; 26:4076-4086.
106. Sammeturi M, Shaik AH, Maruthi Prasad E, Mohammad A, Kodidhela LD. Cardioprotective molecular mechanism of syringic acid against isoproterenol induced post- myocardial toxicity in male albino wistar rats. J King Saud Univ Sci 2020; 32:1375-1381.
107. Shahzad S, Mateen S, Naeem SS, Akhtar K, Rizvi W, Moin S. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. Eur J Pharmacol 2019; 849:135-145.
108. Sammeturi M, Shaik AH, Bongu SBR, Cheemanapalli S, Mohammad A, Kodidhela LD. Protective effects of syringic acid, resveratrol and their combination against isoprenaline administered cardiotoxicity in wistar rats. Saudi J Biol Sci 2019; 26:1429-1435.
109. S M, Shaik AH, E MP, Al Omar SY, Mohammad A, Kodidhela LD. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Sci Rep 2020; 10:3426.
110. Kumar S, Prahalathan P, Raja B. Syringic acid ameliorates l-NAME-induced hypertension by reducing oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1175-1184.
111. Shahzad S, Mateen S, Kausar T, Naeem SS, Hasan A, Abidi M, et al. Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:691-704.
112. Ke Y, Cao Y, Yang C, Yuan P, Yang F, Fu Y, et al. The Effect of Syringic Acid (SP-5) Inhibits LPS-Induced Vascular Injury in Human Pulmonary Artery Endothelial Cells. Latin American J Pharm 2018; 37:346-353.
113. Choi J-H, Kim S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J Funct Foods 2018; 43:112-122.
114. Berberich AJ, Hegele RA. A Modern Approach to Dyslipidemia. Endocr Rev 2021; 43:611-653.
115. AlMuhaidib S, AlBuhairan F, Tamimi W, AlDubayee M, AlAqeel A, Babiker A, et al. Prevalence and factors associated with dyslipidemia among adolescents in Saudi Arabia. Sci Rep 2022; 12:16888.
116. Nikparvar M, Khaladeh M, Yousefi H, Vahidi Farashah M, Moayedi B, Kheirandish M. Dyslipidemia and its associated factors in southern Iranian women, Bandare-Kong Cohort study, a cross-sectional survey. Sci Rep 2021; 11:9125.
117. Shi M, Wang H, Zhang X. Dyslipidemia and its associated factors among community adults located in Shangcheng district, Zhejiang province. Sci Rep 2024; 14:4268.
118. Adeyi OE, Somade OT, Ugwor EI, Ajayi BO, Adeyi AO, Rahman SA, et al. Syringic acid through reduction of inflammation, oxidative injury, and down-regulation of NF-κB-IL-6 pathway ameliorates HFD-induced pulmonary toxicity in male Wistar rats. Comparative Clinical Pathology 2024; 33:787-802.
119. Zaini E, Wahyuni F, Salsabila H, Anggraini D, Yuliandra Y, Lucida H. Eutectic Mixture of Fenofibric Acid and Syringic Acid: Improvement of Dissolution Rate and Its Antihyperlipidemic Activity. ChemistrySelect 2023; 8:e202300044.
120. Sun C, Li W, Zhang H, Adu-Frimpong M, Ma P, Zhu Y, et al. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:45.
121. Ramachandran V, Deepa Mol S, Raja B. Combined effects of vanillic and syringic acids on hepatic markers, lipid peroxides and antioxidants in acetaminophen induced hepatotoxicity in wistar rats: Biochemical and histopathological evidences. Pharmacologyonline 2010; 2:475-486.
122. John CM, Arockiasamy S. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Nat Prod Res 2020; 34:3432-3436.
123. John CM, Arockiasamy S. 3,5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes. In Vitro Cell Dev Biol Anim 2021; 57:386-394.
124. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639.
125. Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024; 403:1027-1050.
126. Tumas N, López SR. Double burden of underweight and obesity: insights from new global evidence. Lancet 2024; 403:998-999.
127. Shi Q, Wang Y, Hao Q, Vandvik PO, Guyatt G, Li J, et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet 2024; 403:e21-e31.
128. Khatun A, Panchali T, Gorai S, Dutta A, Das TK, Ghosh K, et al. Impaired brain equanimity and neurogenesis in the diet-induced overweight mouse: a preventive role by syringic acid treatment. Nutr Neurosci 2024; 27:271-288.
129. Zhang S, Zheng S, Li Y, Yang J, Mao X, Liu T, et al. Protective effects of syringic acid in nonalcoholic fatty liver in rats through regulation of Nrf2/HO-1 signaling pathway. Journal of Biochemical and Molecular Toxicology 2024; 38:e23809.
130. The L. Time for a balanced conversation about menopause. Lancet 2024; 403:877.
131. Hickey M, LaCroix AZ, Doust J, Mishra GD, Sivakami M, Garlick D, et al. An empowerment model for managing menopause. Lancet 2024; 403:947-957.
132. Nappi RE, Chedraui P, Lambrinoudaki I, Simoncini T. Menopause: a cardiometabolic transition. Lancet Diabetes Endocrinol 2022; 10:442-456.
133. Tanaka T, Iwamoto K, Wada M, Yano E, Suzuki T, Kawaguchi N, et al. Dietary syringic acid reduces fat mass in an ovariectomy-induced mouse model of obesity. Menopause 2021; 28:1340-1350.
134. Chowdhury MR, Chowdhury K, Binte Hanif N. In silico evaluation of therapeutic potentials of Syringic acid against some selected diseases. Phytomedicine 2020; 1:6919427.
135. Mirza AC, Panchal SS. Safety evaluation of syringic acid: subacute oral toxicity studies in Wistar rats. Heliyon 2019; 5:e02129.
136. Okur M, ŞAKUL A. Mechanism of antinociceptive action of syringic acid. Journal of Research in Pharmacy 2021; 25:277-286.
137. Sarikaya K, Kölükçü E, Unsal V, Özdemir S. An Experimental Rat Model Study: Is There Any Effect of Syringic Acid on Ischemia-Reperfusion Injury in Priapism? Cureus 2023; 15:e45475.
138. Huang Y, Xu M, Li J, Chen K, Xia L, Wang W, et al. Ex vivo to in vivo extrapolation of syringic acid and ferulic acid as grape juice proxies for endothelium-dependent vasodilation: Redefining vasoprotective resveratrol of the French paradox. Food Chem 2021; 363:130323.