1. Laskin JD, Ozkuyumcu K, Zhou P, Croutch CR, Heck DE, Laskin DL, et al. Skin models used to define mechanisms of action of sulfur mustard. Disaster Med Public Health Prep 2023; 17: e551-573.
2. Sezigen S, Kenar L. Recent sulfur mustard attacks in Middle East and experience of health professionals. Toxicol Lett 2020; 320: 52-57.
3. Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, et al. Therapeutic benefits of stem cells and exosomes for sulfur-mustard-induced tissue damage. Int J Mol Sci 2023; 24: 9947-9961.
4. Ruszkiewicz JA, Bürkle A, Mangerich A. NAD+ in sulfur mustard toxicity. Toxicol Lett 2020; 324: 95-103.
5. Beigi Harchegani A, Khor A, Tahmasbpour E, Ghatrehsamani M, Bakhtiari Kaboutaraki H, Shahriary A. Role of oxidative stress and antioxidant therapy in acute and chronic phases of sulfur mustard injuries: A review. Cutan Ocul Toxicol 2019; 38: 9-17.
6. Borna, H, Hosseini Qale Noe, SH, Harchegani, AB, Talatappe, NR, Ghatrehsamani, M, Ghanei, M, et al. A review on proteomics analysis to reveal biological pathways and predictive proteins in sulfur mustard exposed patients: Roles of inflammation and oxidative stress. Inhal Toxicol 2019; 31: 3-11.
7. Malaviya R, Abramova EV, Rancourt RC, Sunil VR, Napierala M, Weinstock D, et al. Progressive lung injury, inflammation, and fibrosis in rats following inhalation of sulfur mustard. Toxicol Sci 2020; 178: 358-374.
8. Venosa A, Smith LC, Gow AJ, Zarbl H, Laskin JD, Laskin DL. Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicol Appl Pharmacol 2021; 423: 115569-115598.
9. Gros-Désormeaux F, Béracochéa D, Dorandeu F and Piérard C. Cognitive and emotional impairments after cutaneous intoxication by CEES (a sulfur mustard analog) in mice. Toxicol Lett 2018; 293: 73-76.
10. Gupta A, Vijayaraghavan R, Gautam A. Combination therapy of N-acetyl-L-cysteine and S-2(2-aminoethylamino) ethylphenylsulfide for sulfur mustard induced oxidative stress in mice. Toxicol Rep 2021; 8: 599-606.
11. White CW, Rancourt RC, Veress LA. Sulfur mustard inhalation: Mechanisms of injury, alteration of coagulation, and fibrinolytic therapy. Ann N Y Acad Sci 2016; 1378: 87-95.
12. Solopov P, Marinova M, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Development of chronic lung injury and pulmonary fibrosis in mice following acute exposure to nitrogen mustard. Inhal Toxicol 2020; 32: 141-154.
13.Varmazyar M, Kianmehr Z, Faghihzadeh S, Ghazanfari T, Ardestani SK. Time course study of oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced toxicity. Int Immunopharmacol 2019; 73: 81-93.
14. Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83: 843-856.
15. Malaviya R, Bellomo A, Abramova E, Croutch CR, Roseman J, Tuttle R, et al. Pulmonary injury and oxidative stress in rats induced by inhaled sulfur mustard is ameliorated by anti-tumor necrosis factor-alpha antibody. Toxicol Appl Pharmacol 2021; 428: 115677-115698.
16. Foshay WR, Tinkey PT. Evaluating the effectiveness of training strategies: Performance goals and testing. ILAR J 2007; 48: 156-162.
17. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, NC3Rs Reporting Guidelines Working Group. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. J Gene Med 2010; 12: 561-563.
18. Tapak M, Sadeghi S, Ghazanfari T, Mossafa N, Mirsanei SZ, Masiha Hashemi SM. Mesenchymal stem cell therapy mitigates acute and chronic lung damages of sulfur mustard analog exposure. Iran J Allergy Asthma Immunol 2024; 23: 563-577.
19. Liu L, Hu X, Zhang N, Zhong Y, Zhu XJ, Liu T. Oxidative stress reactions in rats with pulmonary injuries induced by sulfur mustard (1LD50). Hum Exp Toxicol 2024; 43: 9603271241308772.
20. Ray R, Keyser B, Benton B, Daher A, Simbulan-Rosenthal CM, Rosenthal DS. Sulfur mustard induces apoptosis in cultured normal human airway epithelial cells: Evidence of a dominant caspase-8-mediated pathway and differential cellular responses. Drug Chem Toxicol 2008; 31: 137-148.
21. Zhuang C, Ni S, Yang ZC, Liu RP. Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways and the antioxidant mechanism of angelica sinensis polysaccharide. Oxid Med Cell Longev 2020; 2020: 3240820-3240832.
22. Zhang R, Bian C, Gao J, Ren H. Endoplasmic reticulum stress in diabetic kidney disease: Adaptation and apoptosis after three UPR pathways. Apoptosis 2023; 28: 977-996.
23. Lang S, Popp T, Kriegs CS, Schmidt A, Balszuweit F, Menacher G, et al. Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol Lett 2018; 293: 2-8.
24. Mao GC, Gong CC, Wang Z, Sun MX, Pei ZP, Meng WQ, et al. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A-YAP axis. Acta Pharmacol Sin 2021; 42: 2082-2093.
25. Gao T, Magnano S, Rynne A, O’Kane L, Barroeta PH ang Zisterer DM. Targeting inhibitor of apoptosis proteins (IAPs) enhances susceptibility of oral squamous carcinoma cells to cisplatin. Exp Cell Res 2024; 437: 113995.
26. Ahmad I, Dera AA, Irfan S, Rajagopalan P, Ali Beg MM, Alshahrani MY, et al. BV6 enhances apoptosis in lung cancer cells by ameliorating caspase expressions through attenuation of XIAP, cIAP-1, and cIAP-2 proteins. J Cancer Res Ther 2022; 18: 1651-1657.
27. Lu PW, Lin RC, Yang JS, Lu EW, Hsieh YH, Tsai MY, et al. O-Y078, a curcumin analog, induces both apoptotic pathways in human osteosarcoma cells via activation of JNK and p38 signaling. Pharmaceuticals (Basel) 2021; 14: 497-513.
28. Tang D, Lam C, Bauer N, Auslaender S, Snedecor B, Laird MW, et al. Bax and Bak knockout apoptosis-resistant Chinese hamster ovary cell lines significantly improve culture viability and titer in intensified fed-batch culture process. Biotechnol Prog 2022; 38: e3228.
29. Hao Q, Chen J, Lu H, Zhou X. The ARTS of p53-dependent mitochondrial apoptosis. J Mol Cell Biol 2023; 14: mjac074-82.
30. Mansouri RA, Percival SS. Cranberry extract initiates intrinsic apoptosis in HL-60 cells by increasing BAD activity through inhibition of AKT phosphorylation. BMC Complement Med Ther 2020; 20: 71-80.
31. Shati AA, Dallak M. Acylated ghrelin protects the hearts of rats from doxorubicin-induced Fas/FasL apoptosis by stimulating SERCA2a mediated by activation of PKA and Akt. Cardiovasc Toxicol 2019; 19: 529-547.
32. Bleesing J. The Fas-mediated apoptosis assay: From concept to clinical application. J Immunol Methods 2025; 537: 113812.
33. Ehrmann JF, Grabarczyk DB, Heinke M, Deszcz L, Kurzbauer R, Hudecz O, et al. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 2023; 379: 1117-1123.
34. Abhari BA, McCarthy N, Le Berre M, Kilcoyne M, Joshi L, Agostinis P, et al. Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress. Cell Death Dis 2019; 10: 155-169.
35. Rafatmanesh A, Behjati M, Mobasseri N, Sarvizadeh M, Mazoochi T, Karimian M. The survivin molecule as a double-edged sword in cellular physiologic and pathologic conditions and its role as a potential biomarker and therapeutic target in cancer. J Cell Physiol 2020; 235: 725-744.
36. Wheatley S, Altieri DC. Survivin at a glance. J Cell Sci 2019; 132: jcs223826.
37.Ubaid S, Pandey S, Akhtar MS, Rumman M, Singh B, Mahdi AA. SIRT1 mediates neuroprotective and neurorescue effects of camel α-lactalbumin and oleic acid complex on rotenone-induced arkinson’s disease. ACS Chem Neurosci 2022; 13: 1263-1272.
38. Sabnam S, Pal A. Relevance of Erk1/2-PI3K/Akt signaling pathway in CEES-induced oxidative stress regulates inflammation and apoptosis in keratinocytes. Cell Biol Toxicol 2019; 35: 541-564.
39.Steinritz D, Emmler J, Hintz M, Worek F, Kreppel H, Szinicz L, et al. Apoptosis in sulfur mustard treated A549 cell cultures. Life Sci 2007; 80: 2199-21201.
40. Mosayebzadeh M, Ghazanfari T, Delshad A, Akbari H. Evaluation of apoptosis in the lung tissue of sulfur mustard-exposed individuals. Iran J Allergy Asthma Immunol 2016; 15: 283-288.
41. Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, et al. Therapeutic benefits of stem cells and exosomes for sulfur-mustard-induced tissue damage. Int J Mol Sci 2023; 24: 9947-9961.
42. Caballero RE, Dong SXM, Gajanayaka N, Ali H, Cassol E, Cameron WD, et al. Role of RIPK1 in SMAC mimetics-induced apoptosis in primary human HIV-infected macrophages. Sci Rep 2021; 11: 22901-22919.
43. Dietz L, Ellison CJ, Riechmann C, Cassidy CK, Felfoldi FD, Pinto-Fernández A, et al. Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. Science 2023; 379: 1112-1117.
44. Zhang Z, Zhang H, Chen S, Xu Y, Yao A, Liao Q, et al. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutr Res 2017;38:27-33.
45. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-kappaBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis 2021; 12: 474-492.
46. Mondal SK, Haas D, Han J and Whiteside TL. Small EV in plasma of triple negative breast cancer patients induce intrinsic apoptosis in activated T cells. Commun Biol 2023; 6: 815-829.
47. Guo Z, Zhao M, Jia G, Ma R, Li M. et al. LncRNA PART1 alleviated myocardial ischemia/reperfusion injury via suppressing miR-503-5p/BIRC5 mediated mitochondrial apoptosis. Int J Cardiol 2021; 338: 176-184.
48. Hu Y, Zhang H, Xie N, Liu D, Jiang Y, Liu Z, et al. Bcl-3 promotes TNF-induced hepatocyte apoptosis by regulating the deubiquitination of RIP1. Cell Death Differ 2022; 29: 1176-1186.
49. Jiang YY, Li ZS, Yu D, Xie JW, Zhu XJ, Zhong YX. Changes in inflammatory factors and protein expression in sulfur mustard (1LD50)-induced acute pulmonary injury in rats. Int Immunopharmacol 2018; 61: 338-345.
50. Hu XX, Zhang N, Zhong YX, Liu T, Zhu XJ. Mechanisms of apoptosis and pulmonary fibrosis resulting from sulfur mustard-induced acute pulmonary injury in rats. Int J Toxicol 2025: 10915818251315907.
51. Neff TA, Guo RF, Neff SB, Sarma JV, Speyer CL, Gao H, et al. Relationship of acute lung inflammatory injury to Fas/FasL system. Am J Pathol 2005; 166: 685-694
52. Kan RK, Pleva CM, Hamilton TA, Anderson DR, Petrali JP. Evaluation of apoptosis in the lung tissue of sulfur mustard-exposed individuals. Iran J Allergy Asthma Immunol 2016; 15: 283-288.
53. Rosenthal DS, Velena A, Chou FP, Schlegel R, Ray R, Benton B, et al. Expression of dominant-negative Fas-associated death domain blocks human keratinocyte apoptosis and vesication induced by sulfur mustard. J Biol Chem 2003; 278: 8531-8540.
54. Simbulan-Rosenthal CM, Ray R, Benton B, Soeda E, Daher A, Anderson D, et al. Calmodulin mediates sulfur mustard toxicity in human keratinocytes. Toxicology 2006; 227: 21-35.
55. Steinritz D, Emmler J, Hintz M, Worek F, Kreppel H, Szinicz L, et al. Apoptosis in sulfur mustard treated A549 cell cultures. Life Sci 2007; 80: 2199-2201.
56. Ghazanfari T, Sharifnia Z, Yaraee R, Pourfarzam S, Kariminia A, Mahlojirad M, et al. Serum soluble Fas ligand and nitric oxide in long-term pulmonary complications induced by sulfur mustard: Sardasht-Iran Cohort Study. Int Immunopharmacol 2009; 9: 1489-1493.
57. Pirzad G, Jafari M, Tavana S, Sadrayee H, Ghavami S, Shajiei A, et al. The role of Fas-FasL signaling pathway in induction of apoptosis in patients with sulfur mustardinduced chronic bronchiolitis. J Toxicol 2011; 2010: 373612-373619.
58. Ray R, Simbulan-Rosenthal CM, Keyser BM, Benton B, Anderson D, Holmes W, et al. Sulfur mustard induces apoptosis in lung epithelial cells via a caspase amplification loop. Toxicology 2010; 271: 94-99.
59. Pei Z, Sun Y, Zhang S, Gong C, Mao G, Zhang X, et al. Extracellular vesicles derived from mesenchymal stem cells ameliorate sulfur mustard-induced lung injury by regulating apoptosis via miR-146a-5p. Int Immunopharmacol 2025; 150: 114285.