Troxerutin attenuates LPS-induced inflammation in BV2 microglial cells involving Nrf2 activation and NF-κB pathway inhibition

Document Type : Original Article

Authors

1 Department of Pharmacy, Tianjin Fourth Central Hospital, Tianjin 300140, China

2 Department of Neurology, Tianjin Fourth Central Hospital, Tianjin 300140, China

10.22038/ijbms.2025.87692.18941

Abstract

Objective(s): Microglial cell-mediated neuroinflammation is a key driver of central nervous system (CNS) homeostasis and a significant risk factor for neurodegeneration and development of neurological diseases. We assessed whether troxerutin (TX) exerts anti-neuroinflammatory effects in lipopolysaccharide (LPS)-stimulated BV2 microglia and explored its mechanism.
Materials and Methods: To investigate the suppressive action of TX on M1 polarization, BV2 cells were stimulated with LPS and then treated with TX or minocycline (MINO). Cell viability was assessed via Cell Counting Kit-8 (CCK-8), and inflammatory cytokines were measured by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway was analyzed by Western blotting (WB) to elucidate the molecular mechanism of the anti-neuroinflammatory activity of TX.  
Results: TX inhibited the expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), as well as the secretion of IL-6 and tumor necrosis factor-α (TNF-α). Additionally, TX accelerated the release of transforming growth factor-β (TGF-β) and cluster of differentiation 206 (CD206) in BV2 microglia exposed to LPS. TX regulated the neuroinflammatory response by blocking phosphorylation of NF-κB and inhibitor of kappa B alpha (IκBα) mediated by LPS stimulation and inducing Nrf2 and heme oxygenase-1 (HO-1) protein expression.
Conclusion: TX suppresses pro-inflammatory induction after LPS stimulation of BV2 microglia, which may be related to the NF-κB inhibition and accelerated HO-1/Nrf2 activation. These findings pinpoint the potential therapeutic potential of TX in inflammation-induced neurodegenerative diseases.

Keywords

Main Subjects


1. Huang Z, Zhang L, Wang Y, Gao H, Li X, Huang X, et al. Effects of rutin and its derivatives on citrinin production by Monascus aurantiacus Li AS3.4384 in liquid fermentation using different types of media. Food Chem 2019; 284: 205-212.    
2. Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24: 1-13.   
3. Raja B, Saranya D, Prabhu R. Role of flavonoid troxerutin on blood pressure, oxidative stress and regulation of lipid metabo- lism. Front Biosci (Elite Ed) 2019; 11: 121-129.    
4. Najafi M, Noroozi E, Javadi A, Badalzadeh R. Anti-arrhythmogenic and antiinflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed Pharcother 2018; 102: 385-391.    
5. Malinska H, Hüttl M, Oliyarnyk O, Markova I, Poruba M, Racova Z, et al. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PloS One 2019; 14: e0220377.   
6. Shu L, Zhang W, Huang G, Huang C, Zhu X, Su G, et al. Troxerutin attenuates myocardial cell apoptosis following myocardial ischemiareperfusion injury through inhibition of miR-146a-5p expression. J Cell Physiol 2019; 234: 9274-9282.     
7. Thomas NS, George K, Arivalagan S, Mani V, Siddique AI, Namasivayam N. The In Vivo Antineoplastic and Therapeutic Efficacy of Troxerutin on Rat Preneoplastic Liver: Biochemical, Histological and Cellular Aspects. Eur J Nutr 2017; 56: 2353-2366.    
8. Geetha R, Radika MK, Priyadarshini E, Bhavani K, Anuradha CV. Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem 2015; 407: 263-279.    
9. Bayandor P, Farajdokht F, Mohaddes G, Diba R, Hosseindoost M, Mehri K, et al. The effect of troxerutin on anxiety- and depressive-like behaviours in the offspring of high-fat diet fed dams. Arch Physiol Biochem 2019; 125: 156-162.   
10. Gao M, Kang Y, Zhang L, Li H, Qu C, Luan X, et al. Troxerutin attenuates cognitive decline in the hippocampus of male diabetic rats by inhibiting NADPH oxidase and activating the Nrf2/ARE signaling pathway. Int J Mol Med 2020; 46: 1239-1248.   
11. Babri S, Amani M, Mohaddes G, Alihemmati A, Ebrahimi H. Protective effects of troxerutin on β-amyloid (1-42)-induced impairments of spatial learning and memory in rats. Neurophysiology 2012; 44: 387-393.  
12. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, et al. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. The Journal of Immunology 2013; 190: 3466-3479. 
13. Farajdokht F, Amani M, Mirzaei Bavil F, Alihemmati A, Mohaddes G, Babri S. Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI J 2017; 16: 1081-1089. 
14. Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer’s disease. Mol Neurodegener 2024; 19: 30.       
15. Yang QQ, Zhou JW. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2019; 67: 1017-1035. 
16. Liang T, Yang SX, Qian C, Du LD, Qian ZM, Yung WH, et al. HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism. Mol Neurobiol 2024; 61: 2006-2020. 
17. Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022: 19: 273. 
18. Nheu D, Ellen O, Ye S, Ozturk E, Pagnin M, Kertadjaja S, et al. Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11: 3768.    
19. Al Mamun A, Chauhan A, Qi S, Ngwa C, Xu Y, Sharmeen R, et al. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci U S A 2020; 117: 1742-1752.   
20. Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, et al. Gx-50 reduces β-amyloidinduced TNF-α, IL-1β, NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer’s disease. Eur J Immunol 2016; 46: 665-676.  
21. Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, et al. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44: 21.
22. Higashi Y, Aratake T, Shimizu S, Shimizu T, Nakamura K, Tsuda M, et al. Influence of extracellular zinc on M1 microglial activation. Sci Rep 2017; 7: 43778. 
23. Yu J, Guo M, Li Y, Zhang H, Chai Z, Wang Q, et al. Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization. Folia Neuropathol 2019; 57: 170-181.   
24. Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Ag Neurosci 2017; 9:176.
25. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, Shifting M1 to M2 Microglia responses. J Neuroimmune Pharmacol 2017; 12: 327-339. 
26. Dong Y, Tang L. Microglial Calcium Homeostasis Modulator 2: Novel Anti-neuroinflammation Target for the Treatment of Neurodegenerative Diseases. Neurosci Bull 2024; 40: 553-556. 
27. Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer’s disease. J Enzyme Inhib Med Chem 2023; 38: 2171026. 
28. Cai W. The comparision of MTT and CCK-8 by detecting cytotoxicity of antiviral active components in traditional Chinese medicine. Journal of Hubei University(Natural Science) 2017; 39: 305-310.
29. Poonasri M, Mankhong S, Chiranthanut N, Srisook K. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF-kappaB, MAPK, and Akt/GSK-3beta pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. Biomed Pharmacother 2023; 168: 115808.
30. Zhou X, Chen X, Cheng X, Lin L, Quan S, Li S, et al. Paeoniflorin, ferulic acid, and atractylenolide III improved LPS-induced neuroinflammation of BV2 microglia cells by enhancing autophagy. J Pharmacol Sci 2023; 152: 151-161.    
31. Wang Y, Chen G, Zhou D, Xu L, Meng Q, Lin B, et al. Chemical profile of the roots of Clausena lansium and their inhibitory effects of the over-activation in BV-2 microglial cells. Phytochemistry 2024; 220: 114008. 
32. Mussbacher M, Derler M, Basílio J, Schmid JA. NF-kappaB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells. Front Immunol 2023; 14: 1134661. 
33. Zusso M, Lunardi V, Franceschini D, Pagetta A, Lo R, Stifani S, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J neuroinflammation 2019; 16: 148.  
34. Guo K, Shang Y, Wang Z, Li Y, Chen J, Zhu B, et al. BRG1 alleviates microglial activation by promoting the KEAP1-NRF2/HO-1 signaling pathway and minimizing oxidative damage in cerebral ischemia-reperfusion. Int Immunopharmacol 2023; 119: 110201. 
35. Mulero MC, Huxford T, Ghosh G. NF-kappaB, IkappaB, and IKK: Integral Components of Immune System Signaling. Adv Exp Med Biol 2019; 1172: 207-226. 
36. Jiang X, Wang R, Zhai S, Zhang Y, Wang D. Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer’s disease. J Neuroinflamm 2020; 17: 305.  
37. Rong S, Yang C, Wang F, Wu Y, Sun K, Sun T, et al. Amentoflavone Exerts Anti-Neuroinflammatory Effects by Inhibiting TLR4/MyD88/NF-κB and Activating Nrf2/HO-1 Pathway in Lipopolysaccharide-Induced BV2 Microglia. Mediators Inflamm 2022; 2022: 5184721.
38. Wang LY, Huang CS, Chen YH, Chen CC, Chen CC, Chuang CH. Anti-Inflammatory Effect of Erinacine C on NO Production Through Down-Regulation of NF-κB and Activation of Nrf2-Mediated HO-1 in BV2 Microglial Cells Treated with LPS. Molecules 2019; 24: 3317.
39. Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 2018; 50: 77-97.   
40. Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An update. Med Res Rev 2016; 36: 924-963.  
41. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73: 3221-3247. 
42. Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2016; 577: 109-118.    
43. Seo JY, Pyo E, Park J, Kim JS, Sung SH, Oh WK. Nrf2-Mediated HO-1 Induction and Antineuroinflammatory Activities of Halleridone. Med Food 2017; 20: 1091-1099. 
44. Zhang L, Zhang X, Wu T, Pan X, Wang Z. Isoflurane reduces septic neuron injury by HO-1-mediated abatement of inflammation and apoptosis. Mol Med Rep 2021; 23: 155. 
45. Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, et al. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-kB pathways. Toxicol Appl Pharmacol 2020; 397: 115014. 
46. Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21: 411-425. 
47. Wu Y, Fan L, Wang Y, Ding J, Wang R. Isorhamnetin alleviates high glucose- aggravated inflammatory response and apoptosis in oxygen-glucose deprivation and reoxygenation-induced HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Inflammation 2021; 44: 1993-2005. 
48. Wang Y, Zhang XN, Meng FG, Zeng T. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicol Mech Methods 2021; 31: 334-342. 
49. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Comm 2016; 7: 11624. 
50. Ren J, Li L, Wang Y, Zhai J, Chen G, Hu K. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells. Biomed Pharmacother 2019; 109: 555-562. 
51. Zhang X, Li J, Cao C, Liu Z, Chen Q, Gu Z, et al. Nrf2 activation by neferine mitigates microglial neuroinflammation after subarachnoid hemorrhage through inhibiting TAK1-NF-kappaB signaling. Int Immunopharmacol 2024; 130: 111693.
52. Daverey A, Agrawal SK. Curcumin Protects against White Matter Injury through NF-kappaB and Nrf2 Cross Talk. J Neurotrauma 2020; 37: 1255-1265.